48 research outputs found

    New reconstruction of event-integrated spectra (spectral fluences) for major solar energetic particle events

    Full text link
    Fluences of solar energetic particles (SEPs) are not easy to evaluate, especially for high-energy events (i.e. ground-level enhancements, GLEs). Earlier estimates of event-integrated SEP fluences for GLEs were based on partly outdated assumptions and data, and they required revisions. Here, we present the results of a full revision of the spectral fluences for most major SEP events (GLEs) for the period from 1956 -- 2017 using updated low-energy flux estimates along with greatly revisited high-energy flux data and applying the newly invented reconstruction method including an improved neutron-monitor yield function. Low- and high-energy parts of the SEP fluence were estimated using a revised space-borne/ionospheric data and ground-based neutron monitors, respectively. The measured data were fitted by the modified Band function spectral shape. The best-fit parameters and their uncertainties were assessed using a direct Monte Carlo method. As a result, a full reconstruction of the event-integrated spectral fluences was performed in the energy range above 30 MeV, parametrised, and tabulated for easy use along with estimates of the 68% confidence intervals. This forms a solid basis for more precise studies of the physics of solar eruptive events and the transport of energetic particles in the interplanetary medium, as well as the related applications.Comment: 19 pages, 3 figures, to be published in Astronomy and Astrophysic

    A solar cycle lost in 1793--1800: Early sunspot observations resolve the old mystery

    Full text link
    Because of the lack of reliable sunspot observation, the quality of sunspot number series is poor in the late 18th century, leading to the abnormally long solar cycle (1784--1799) before the Dalton minimum. Using the newly recovered solar drawings by the 18--19th century observers Staudacher and Hamilton, we construct the solar butterfly diagram, i.e. the latitudinal distribution of sunspots in the 1790's. The sudden, systematic occurrence of sunspots at high solar latitudes in 1793--1796 unambiguously shows that a new cycle started in 1793, which was lost in traditional Wolf's sunspot series. This finally confirms the existence of the lost cycle that has been proposed earlier, thus resolving an old mystery. This letter brings the attention of the scientific community to the need of revising the sunspot series in the 18th century. The presence of a new short, asymmetric cycle implies changes and constraints to sunspot cycle statistics, solar activity predictions, solar dynamo theories as well as for solar-terrestrial relations.Comment: Published by Astrophys. J. Let

    Occurrence of extreme solar particle events: Assessment from historical proxy data

    Full text link
    The probability of occurrence of extreme solar particle events (SPEs) with the fluence of (>30 MeV) protons F30>10^{10} cm^{-2} is evaluated based on data of cosmogenic isotopes 14C and 10Be in terrestrial archives centennial-millennial time scales. Four potential candidates with F30=(1-1.5)x10^{10} cm^{-2} and no events with F30>2x10^{10} cm^{-2} are identified since 1400 AD in the annually resolved 10Be data. A strong SPE related to the Carrington flare of 1859 AD is not supported by the data. For the last 11400 years, 19 SPE candidates with F30=(1-3)x10^{10} cm^{-2} are found and clearly no event with F30>5x10^{10} cm^{-2} (50-fold the SPE of 23-Feb-1956) occurring. This values serve as an observational upper limit for the strength of SPE on the time scale of tens of millennia. Two events, ca. 780 and 1460 AD, appear in different data series making them strong candidates to extreme SPEs. We built a distribution of the occurrence probability of extreme SPEs, providing a new strict observational constraint. Practical limits can be set as F30~1x, 2-3x, and 5x10^{10} cm^{-2} for the occurrence probability ~10^{-2}, 10^{-3} and 10^{-4} year^{-1}, respectively. Because of uncertainties, our results should be interpreted as a conservative upper limit of the SPE occurrence near Earth. The mean SEP flux is evaluated as ~40 (cm2 sec)^{-1} in agreement with estimates from the lunar rocks. On average, extreme SPEs contribute about 10% to the total SEP fluence.Comment: accepted to Astrophys.

    Neutron Monitors and Cosmogenic Isotopes as Cosmic Ray Energy-Integration Detectors : Effective Yield Functions, Effective Energy, and Its Dependence on the Local Interstellar Spectrum

    Get PDF
    The method of assessment of galactic cosmic rays (GCR) variability over different timescales, using energy-integrating ground-based detectors such as a neutron monitor and cosmogenic isotopes 10Be and 14C stored in natural archives is revisited here. The effective yield functions for cosmogenic 14C (globally mixed in the atmosphere) and 10Be (realistically deposited in the polar region) are calculated and provided, in a tabulated form, in the supporting information. The effective energy of a detector is redefined so that the variability of the flux of GCR particles at this energy is equal to that of the detector's count rate. The effective energy is found as 11–12 GeV/nucleon for the standard polar neutron monitor, and 6–7 GeV/nucleon and 5.5–6 GeV/nucleon for 14C and 10Be, respectively. New “calibration” relations between the force-field modulation potentials, based on different models of local interstellar spectra (LIS) are provided. While such relations are typically based on refitting the modeled cosmic ray spectra with a prescribed LIS model, the method introduced here straightforwardly accounts for the exact type of the detector used to assess the spectrum. The relations are given separately for ground-based neutron monitors and cosmogenic isotopes. This work allows for harmonization of different works related to variability of galactic cosmic ray flux in the vicinity of Earth, on long-term scale.Peer reviewe

    Consistency of the average flux of solar energetic particles over timescales of years to megayears

    Get PDF
    Aims. Solar energetic particles (SEPs) have been measured directly in space over the past decades. Rare extreme SEP events are studied based on terrestrial cosmogenic proxy data for the past ten millennia. Lunar rocks record the average SEP fluxes on the megayear timescale. The question of whether the SEP fluxes averaged over different timescales are mutually consistent is still open. Here we analyze these different datasets for mutual consistency.Methods. Using the data from directly measured SEPs over the past decades and reconstructions of extreme SEP events in the past, we built a distribution function of the occurrence of annual SEP fluences for SEPs with energies above 30, 60, 100, and 200 MeV. The distribution function was fit with the Weibull and other types of distributions, and the long-term average SEP flux was computed and compared with the megayear SEP flux estimated from lunar data.Results. In contrast to the current paradigm, the direct space-era data are not representative of the long-term averaged SEP flux because they are only 20-55% of it, while the major fraction was formed by rare extreme SEP events in the past. The combined statistics of direct and proxy data are fully consistent with megayear lunar data, implying that our knowledge of the whole range of the SEP fluxes, from frequent weak to rare extreme events, is now consistent.</p

    A new model of cosmogenic production of radiocarbon 14C in the atmosphere

    Full text link
    We present the results of full new calculation of radiocarbon 14C production in the Earth atmosphere, using a numerical Monte-Carlo model. We provide, for the first time, a tabulated 14C yield function for the energy of primary cosmic ray particles ranging from 0.1 to 1000 GeV/nucleon. We have calculated the global production rate of 14C, which is 1.64 and 1.88 atoms/cm2/s for the modern time and for the pre-industrial epoch, respectively. This is close to the values obtained from the carbon cycle reservoir inventory. We argue that earlier models overestimated the global 14C production rate because of outdated spectra of cosmic ray heavier nuclei. The mean contribution of solar energetic particles to the global 14C is calculated as about 0.25% for the modern epoch. Our model provides a new tool to calculate the 14C production in the Earth's atmosphere, which can be applied, e.g., to reconstructions of solar activity in the past.Comment: Published in EPSL, 337, 114, 201
    corecore