68 research outputs found
Recommended from our members
Exosomes are natural carriers of exogenous siRNA to human cells in vitro
© 2013 Shtam et al. Background: Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication including shuttle RNA, mainly mRNA and microRNA. As exosomes naturally carry RNA between cells, these particles might be useful in gene cancer therapy to deliver therapeutic short interfering RNA (siRNA) to the target cells. Despite the promise of RNA interference (RNAi) for use in therapy, several technical obstacles must be overcome. Exogenous siRNA is prone to degradation, has a limited ability to cross cell membranes and may induce an immune response. Naturally occurring RNA carriers, such as exosomes, might provide an untapped source of effective delivery strategies. Results: This study demonstrates that exosomes can deliver siRNA to recipient cells in vitro. The different strategies were used to introduce siRNAs into human exosomes of various origins. The delivery of fluorescently labeled siRNA via exosomes to cells was confirmed using confocal microscopy and flow cytometry. Two different siRNAs against RAD51 and RAD52 were used to transfect into the exosomes for therapeutic delivery into target cells. The exosome-delivered siRNAs were effective at causing post-transcriptional gene silencing in recipient cells. Moreover, the exosome-delivered siRNA against RAD51 was functional and caused the massive reproductive cell death of recipient cancer cells. Conclusions: The results strongly suggest that exosomes effectively delivered the siRNA into the target cells. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated in vitro by the strong knockdown of RAD51, a prospective therapeutic target for cancer cells. The results give an additional evidence of the ability to use human exosomes as vectors in cancer therapy, including RNAi-based gene therapy. © 2013 Shtam et al.; licensee BioMed Central Ltd.Russian Federal Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia”, contract 14.740.11.0754 and Fellowship from the Administration of Leningrad region to Shtam T
Nanomechanical Detection of Itinerant Electron Spin Flip
Spin is an intrinsically quantum property, characterized by angular momentum.
A change in the spin state is equivalent to a change in the angular momentum or
mechanical torque. This spin-induced torque has been invoked as the intrinsic
mechanism in experiments ranging from the measurements of angular momentum of
photons g-factor of metals and magnetic resonance to the magnetization reversal
in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic
nanowire produces a torque associated with the itinerant electron spin flip.
Here, we report direct measurement of this mechanical torque and itinerant
electron spin polarization in an integrated nanoscale torsion oscillator, which
could yield new information on the itinerancy of the d-band electrons. The
unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable
applications for spintronics, precision measurements of CP-violating forces,
untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper
LIGHT Induces Distinct Signals to Clear an AAV-Expressed Persistent Antigen in the Mouse Liver and to Induce Liver Inflammation
Background: Infection with adeno-associated virus (AAV) vector with liver tropism leads to persistent expression of foreign antigens in the mouse liver, with no significant liver inflammation or pathology. This provides a model to investigate antigen persistence in the liver and strategies to modulate host immunity to reduce or clear the foreign antigen expressed from AAV vector in the liver. Methods/Principal Findings: We showed that expressing LIGHT with an adenovirus vector (Ad) in mice with established AAV in the liver led to clearance of the AAV. Ad-LIGHT enhanced CD8 effector T cells in the liver, correlated with liver inflammation. LTbR-Ig proteins blocked Ad-LIGHT in clearing AAV. Interestingly, in LTbR-null mice, Ad-LIGHT still cleared AAV but caused no significant liver inflammation. Conclusions/Significance: Our data suggest that LIGHT interaction with the LTbR plays a critical role in liver inflammation but is not required for LIGHT-mediated AAV clearance. These findings will shed light on developing novel immunotherapeutic
Texture analysis of MR images of patients with Mild Traumatic Brain Injury
<p>Abstract</p> <p>Background</p> <p>Our objective was to study the effect of trauma on texture features in cerebral tissue in mild traumatic brain injury (MTBI). Our hypothesis was that a mild trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection but could be detected with texture analysis (TA).</p> <p>Methods</p> <p>We imaged 42 MTBI patients by using 1.5 T MRI within three weeks of onset of trauma. TA was performed on the area of mesencephalon, cerebral white matter at the levels of mesencephalon, corona radiata and centrum semiovale and in different segments of corpus callosum (CC) which have been found to be sensitive to damage. The same procedure was carried out on a control group of ten healthy volunteers. Patients' TA data was compared with the TA results of the control group comparing the amount of statistically significantly differing TA parameters between the left and right sides of the cerebral tissue and comparing the most discriminative parameters.</p> <p>Results</p> <p>There were statistically significant differences especially in several co-occurrence and run-length matrix based parameters between left and right side in the area of mesencephalon, in cerebral white matter at the level of corona radiata and in the segments of CC in patients. Considerably less difference was observed in the healthy controls.</p> <p>Conclusions</p> <p>TA revealed significant changes in texture parameters of cerebral tissue between hemispheres and CC segments in TBI patients. TA may serve as a novel additional tool for detecting the conventionally invisible changes in cerebral tissue in MTBI and help the clinicians to make an early diagnosis.</p
Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes
Background: Prostate cancer cells in primary tumors have been typed CD10(-)/CD13(-)/CD24(hi)/CD26(+)/CD38(lo)/CD44(-)/CD104(-). This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods: CD26(+) cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results: The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions: Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.National Institutes of Health (NIH)[CA111244]National Institutes of Health (NIH)[CA98699]National Institutes of Health (NIH)[CA85859]National Institutes of Health (NIH)[DK63630][P50-GMO-76547
Quantum Rings in Electromagnetic Fields
This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordThis chapter is devoted to optical properties of so-called Aharonov-Bohm
quantum rings (quantum rings pierced by a magnetic flux resulting in AharonovBohm
oscillations of their electronic spectra) in external electromagnetic fields.
It studies two problems. The first problem deals with a single-electron AharonovBohm
quantum ring pierced by a magnetic flux and subjected to an in-plane (lateral)
electric field. We predict magneto-oscillations of the ring electric dipole moment.
These oscillations are accompanied by periodic changes in the selection rules for
inter-level optical transitions in the ring allowing control of polarization properties
of the associated terahertz radiation. The second problem treats a single-mode microcavity
with an embedded Aharonov-Bohm quantum ring which is pierced by a
magnetic flux and subjected to a lateral electric field. We show that external electric
and magnetic fields provide additional means of control of the emission spectrum
of the system. In particular, when the magnetic flux through the quantum ring is
equal to a half-integer number of the magnetic flux quanta, a small change in the
lateral electric field allows for tuning of the energy levels of the quantum ring into
resonance with the microcavity mode, thus providing an efficient way to control
the quantum ring-microcavity coupling strength. Emission spectra of the system are
discussed for several combinations of the applied magnetic and electric fields
Validation of a Novel Multivariate Method of Defining HIV-Associated Cognitive Impairment
Background. The optimum method of defining cognitive impairment in virally suppressed people living with HIV is unknown. We evaluated the relationships between cognitive impairment, including using a novel multivariate method (NMM), patientreported outcome measures (PROMs), and neuroimaging markers of brain structure across 3 cohorts.Methods. Differences in the prevalence of cognitive impairment, PROMs, and neuroimaging data from the COBRA, CHARTER, and POPPY cohorts (total n = 908) were determined between HIV-positive participants with and without cognitive impairment defined using the HIV-associated neurocognitive disorders (HAND), global deficit score (GDS), and NMM criteria.Results. The prevalence of cognitive impairment varied by up to 27% between methods used to define impairment (eg, 48% for HAND vs 21% for NMM in the CHARTER study). Associations between objective cognitive impairment and subjective cognitive complaints generally were weak. Physical and mental health summary scores (SF-36) were lowest for NMM-defined impairment (P<.05). There were no differences in brain volumes or cortical thickness between participants with and without cognitive impairment defined using the HAND and GDS measures. In contrast, those identified with cognitive impairment by the NMM had reduced mean cortical thickness in both hemispheres (P<.05), as well as smaller brain volumes (P<.01). The associations with measures of white matter microstructure and brain-predicted age generally were weaker.Conclusion. Different methods of defining cognitive impairment identify different people with varying symptomatology and measures of brain injury. Overall, NMM-defined impairment was associated with most neuroimaging abnormalities and poorer selfreported health status. This may be due to the statistical advantage of using a multivariate approach
Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders
- …