1 research outputs found

    Microstructure ā€“ Properties relationship in laser-welded AZ31B magnesium alloy

    Get PDF
    The AZ31B magnesium alloy was laser-welded at three different (1.2, 1.6, and 2 kW) laser output powers in the present work. All the butt weld joints are almost defect-free. The size of the weld joint slightly increases with increasing laser output power. The weld metal is formed by columnar grains of the alpha phase at the weld metal/base metal interface, but a finely equiaxed grain microstructure is formed in the centres of fusion zones. The minor phases are Mg17Al12 and (Al,Mg)8Mn5. The weld metal microstructure manifests clear refinement with a decrease in laser output power. Microstructural changes are reflected in changes in mechanical properties; weld joints prepared at the lowest laser output power manifest the highest microhardness, ultimate tensile strength, yield strength, and almost 90% joint efficiency. This is related to the different extents of strengthening mechanisms that act most effectively in weld joints made at 1.2 kW laser output power. Detail analysis of fracture surfaces confirmed that lower laser output power and general microstructural refinement favours the formation of plastically deformed material, which is in excellent agreement with both the experimentally determined and the calculated values of yield strength
    corecore