22 research outputs found

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Evidence for long-range glycosyl transfer reactions in the gas phase

    Full text link
    AbstractA long-range glycosyl transfer reaction was observed in the collision-induced dissociation Fourier transform (CID FT) mass spectra of benzylamine-labeled and 9-aminofluorene-labeled lacto-N-fucopentaose I (LNFP I) and lacto-N-difucohexaose I (LNDFH I). The transfer reaction was observed for the protonated molecules but not for the sodiated molecules. The long-range glycosyl transfer reaction involved preferentially one of the two L-fucose units in labeled LNDFH I. CID experiments with labeled LNFP I and labeled LNFP II determined the fucose with the greatest propensity for migration. Further experiments were performed to determine the final destination of the migrating fucose. Molecular modeling supported the experiments and reaction mechanisms are proposed

    Loss of internal 1 → 6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides

    Get PDF
    The fragmentation behavior of [M + H]+ ions of a series of underivatized and per-O-methylated trisaccharides having 1 → 6 linked residues, of which one or two is a deoxy-fluoro or deoxy residue and thus has a unique mass, has been studied by using collision-induced dissociation fast-atom bombardment mass spectrometry. In addition to the usual fragment ions resulting from glycosidic bond cleavage, fragment ions were observed which must have been generated following an unusual rearrangement process which can be rationalized in terms of the loss of an internal monosaccharide residue
    corecore