862 research outputs found

    Kondo effect in coupled quantum dots with RKKY interaction: Finite temperature and magnetic field effects

    Full text link
    We study transport through two quantum dots coupled by an RKKY interaction as a function of temperature and magnetic field. By applying the Numerical Renormalization Group (NRG) method we obtain the transmission and the linear conductance. At zero temperature and magnetic field, we observe a quantum phase transition between the Kondo screened state and a local spin singlet as the RKKY interaction is tuned. Above the critical RKKY coupling the Kondo peak is split. However, we find that both finite temperature and magnetic field restore the Kondo resonance. Our results agree well with recent transport experiments on gold grain quantum dots in the presence of magnetic impurities.Comment: 4 pages, 5 figure

    Frequency-dependent transport through a quantum dot in the Kondo regime

    Full text link
    We study the AC conductance and equilibrium current fluctuations of a Coulomb blockaded quantum dot. A relation between the equilibrium spectral function and the linear AC conductance is derived which is valid for frequencies well below the charging energy of the quantum dot. Frequency-dependent transport measurements can thus give experimental access to the Kondo peak in the equilibrium spectral function of a quantum dot. We illustrate this in detail for typical experimental parameters using the numerical renormalization group method in combination with the Kubo formalism.Comment: 4 pages, 4 figure

    Quantum Phase Transition in a Multi-Level Dot

    Full text link
    We discuss electronic transport through a lateral quantum dot close to the singlet-triplet degeneracy in the case of a single conduction channel per lead. By applying the Numerical Renormalization Group, we obtain rigorous results for the linear conductance and the density of states. A new quantum phase transition of the Kosterlitz-Thouless type is found, with an exponentially small energy scale T∗T^* close to the degeneracy point. Below T∗T^*, the conductance is strongly suppressed, corresponding to a universal dip in the density of states. This explains recent transport measurements.Comment: 4 pages, 5 eps figures, published versio

    Two-stage Kondo effect in side-coupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis

    Full text link
    We study numerically and analytically the dynamical (AC) conductance through a two-dot system, where only one of the dots is coupled to the leads but it is also side-coupled to the other dot through an antiferromagnetic exchange (RKKY) interaction. In this case the RKKY interaction gives rise to a ``two-stage Kondo effect'' where the two spins are screened by two consecutive Kondo effects. We formulate a renormalized scaling theory that captures remarkably well the cross-over from the strongly conductive correlated regime to the low temperature low conductance state. Our analytical formulas agree well with our numerical renormalization group results. The frequency dependent current noise spectrum is also discussed.Comment: 6 pages, 7 figure

    Impurity effects in few-electron quantum dots: Incipient Wigner molecule regime

    Full text link
    Numerically exact path-integral Monte Carlo data are presented for N≤10N\leq 10 strongly interacting electrons confined in a 2D parabolic quantum dot, including a defect to break rotational symmetry. Low densities are studied, where an incipient Wigner molecule forms. A single impurity is found to cause drastic effects: (1) The standard shell-filling sequence with magic numbers N=4,6,9N=4,6,9, corresponding to peaks in the addition energy Δ(N)\Delta(N), is destroyed, with a new peak at N=8, (2) spin gaps decrease, (3) for N=8, sub-Hund's rule spin S=0 is induced, and (4) spatial ordering of the electrons becomes rather sensitive to spin. We also comment on the recently observed bunching phenomenon.Comment: 7 pages, 1 table, 4 figures, accepted for publication in Europhysics Letter

    Two path transport measurements on a triple quantum dot

    Get PDF
    We present an advanced lateral triple quantum dot made by local anodic oxidation. Three dots are coupled in a starlike geometry with one lead attached to each dot thus allowing for multiple path transport measurements with two dots per path. In addition charge detection is implemented using a quantum point contact. Both in charge measurements as well as in transport we observe clear signatures of states from each dot. Resonances of two dots can be established allowing for serial transport via the corresponding path. Quadruple points with all three dots in resonance are prepared for different electron numbers and analyzed concerning the interplay of the simultaneously measured transport along both paths.Comment: 4 pages, 4 figure

    Rotational levels in quantum dots

    Full text link
    Low energy spectra of isotropic quantum dots are calculated in the regime of low electron densities where Coulomb interaction causes strong correlations. The earlier developed pocket state method is generalized to allow for continuous rotations. Detailed predictions are made for dots of shallow confinements and small particle numbers, including the occurance of spin blockades in transport.Comment: RevTeX, 10 pages, 2 figure

    Magnetically induced chessboard pattern in the conductance of a Kondo quantum dot

    Full text link
    We quantitatively describe the main features of the magnetically induced conductance modulation of a Kondo quantum dot -- or chessboard pattern -- in terms of a constant-interaction double quantum dot model. We show that the analogy with a double dot holds down to remarkably low magnetic fields. The analysis is extended by full 3D spin density functional calculations. Introducing an effective Kondo coupling parameter, the chessboard pattern is self-consistently computed as a function of magnetic field and electron number, which enables us to quantitatively explain our experimental data.Comment: 4 pages, 3 color figure

    Measurements of higher order noise correlations in a quantum dot with a finite bandwidth detector

    Full text link
    We present measurements of the fourth and fifth cumulants of the distribution of transmitted charge in a tunable quantum dot. We investigate how the measured statistics is influenced by the finite bandwidth of the detector and by the finite measurement time. By including the detector when modeling the system, we use the theory of full counting statistics to calculate the noise levels for the combined system. The predictions of the finite-bandwidth model are in good agreement with measured data
    • …
    corecore