18 research outputs found

    Long-term effects of a modified, low-protein infant formula on growth and body composition:Follow-up of a randomized, double-blind, equivalence trial

    Get PDF
    Background & aim: High protein intake in early life is associated with an increased risk of childhood obesity. Feeding a modified lower-protein (mLP) infant formula (1.7 g protein/100 kcal) until the age of 6 months is safe and supports adequate growth. The aim of the present study is to assess longer-term anthropometry with BMI at 1 and 2 years as primary outcome parameter and body composition in children fed mLP formula. Methods: Healthy term-born infants received mLP or control formula (CTRL) (2.1 g protein/100 kcal) until 6 months of age in a double-blinded RCT. A breast-fed (BF) group served as a reference. Anthropometry data were obtained at 1 and 2 years of age. At the age of 2 years, body composition was measured with air-displacement plethysmography. Groups were compared using linear mixed model analysis. Results: At 1 and 2 years of age, anthropometry, including BMI, and body composition did not differ between the formula groups (n = 74 mLP; n = 69 CTRL). Compared to the BF group (n = 51), both formula-fed groups had higher z scores for weight for age, length for age, waist circumference for age, and mid-upper arm circumference for age at 1 year of age, but not at 2 years of age (except for z score of weight for age in the mLP group). In comparison to the BF group, only the mLP group had higher fat mass, fat-free mass, and fat mass index. However, % body fat did not differ between feeding groups. Conclusions: In this follow-up study, no significant differences in anthropometry or body composition were observed until 2 years of age between infants fed mLP and CTRL formula, despite the significantly lower protein intake in the mLP group during the intervention period. The observed differences in growth and body composition between the mLP group and the BF reference group makes it necessary to execute new trials evaluating infant formulas with improved protein quality together with further reductions in protein content. Clinical Trial Registry: This trial was registered in the Dutch Trial Register (Study ID number NTR4829, trial number NL4677). https://www.trialregister.nl/trial/4677

    Early-Life Metabolic and Hormonal Markers in Blood and Growth until Age 2 Years:Results from a Randomized Controlled Trial in Healthy Infants Fed a Modified Low-Protein Infant Formula

    Get PDF
    Background: High protein intake in early life is associated with an increased risk of childhood obesity. Dietary protein intake may be a key mechanistic modulator through alterations in endocrine and metabolic responses. Objective: We aimed to determine the impact of different protein intake of infants on blood metabolic and hormonal markers at the age of four months. We further aimed to investigate the association between these markers and anthropometric parameters and body composition until the age of two years. Design: Term infants received a modified low-protein formula (mLP) (1.7 g protein/100 kcal) or a specifically designed control formula (CTRL) (2.1 g protein/100 kcal) until 6 months of age in a double blinded RCT. The outcomes were compared with a breast-fed (BF) group. Glucose, insulin, leptin, IGF-1, IGF-BP1, -BP2, and -BP3 levels were measured at the age of 4 months. Anthropometric parameters and body composition were assessed until the age of 2 years. Groups were compared using linear regression analysis. Results: No significant differences were observed in any of the blood parameters between the formula groups (n = 53 mLP; n = 44 CTRL) despite a significant difference in protein intake. Insulin and HOMA-IR were higher in both formula groups compared to the BF group (n = 36) (p < 0.001). IGF-BP1 was lower in both formula groups compared to the BF group (p < 0.01). We found a lower IGF-BP2 level in the CTRL group compared to the BF group (p < 0.01) and a higher IGF-BP3 level in the mLP group compared to the BF group (p = 0.03). There were no significant differences in glucose, leptin, and IGF-1 between the three feeding groups. We found specific associations of all early-life metabolic and hormonal blood parameters with long-term growth and body composition except for IGF-1. Conclusions: Reducing protein intake by 20% did not result in a different metabolic profile in formula-fed infants at 4 months of age. Formula-fed infants had a lower insulin sensitivity compared to breast-fed infants. We found associations between all metabolic and hormonal markers (except for IGF-1) determined at age 4 months and growth and body composition up to two years of age

    Low-Protein Infant Formula and Obesity Risk

    No full text
    Infant formulas have been designed to mimic human milk for infants who cannot be breastfed. The overall goal is to establish similar functional outcomes to assure optimal growth, development, maturation of the immune system, and programming of the metabolic system. However, after decades of improving infant formula, growth patterns and body composition development are still different in formula-fed infants compared to breastfed infants, which could contribute to an increased risk of obesity among formula-fed infants. It has been hypothesized that the lower protein concentration of breast milk compared to infant formula influences infants&rsquo; growth and body composition. Thus, several trials in formula-fed infants with different protein intake levels have been performed to test this hypothesis. In this review, we discuss the current evidence on low-protein infant formula and obesity risk, including future perspectives and implications

    Optimal Growth of Preterm Infants

    No full text
    The cause of growth restriction in preterm infants is multifactorial, but it has been estimated that about 50% of the variance in early postnatal growth can be attributed to nutrition. Very low birth weight (VLBW) infants who were born small-for-gestational age (SGA) seem to have the highest risk to become growth restricted. Possibly, the intrauterine growth-retarded preterm infant is metabolically different from its appropriately grown counterpart and therefore has different nutritional needs. Neonatal nutrition and the resulting postnatal growth are major determinants in the short- and long-term outcomes of preterm neonates. Although having favorable effects on neurodevelopmental outcome, rapid postnatal weight gain after a period of nutritional restriction is associated with the development of insulin resistance and metabolic syndrome in later life. It seems likely that minimization of postnatal growth failure will decrease the need for catch-up growth and thereby decrease the risk of developing cardiovascular risk factors. Monitoring postnatal growth with current growth charts is complicated. Most growth charts that are currently being used are a reflection of current (nutritional) practices and are not a prescription of how VLBW should grow under optimal conditions. In addition to body weight, other aspects of growth such as lean body mass and length gain should also be taken into account when assessing the quality of postnatal growth. Noninvasive measurements of infant body composition are useful tools in evaluating the success of different nutritional interventions. However, all currently available methods have substantial drawbacks. A relatively new and promising method is air displacement plethysmography. This method still needs to be validated in preterm neonates. In conclusion, neonatal nutrition is a major determinant in the short- and long-term outcomes of preterm neonates. Monitoring postnatal growth is complicated by the lack of prescriptive growth charts and noninvasive measurements to assess the quality of growth. Copyright (C) 2013 S. Karger AG, Base

    Low-Protein Infant Formula and Obesity Risk

    Get PDF
    Infant formulas have been designed to mimic human milk for infants who cannot be breastfed. The overall goal is to establish similar functional outcomes to assure optimal growth, de-velopment, maturation of the immune system, and programming of the metabolic system. However, after decades of improving infant formula, growth patterns and body composition development are still different in formula-fed infants compared to breastfed infants, which could contribute to an increased risk of obesity among formula-fed infants. It has been hypothesized that the lower protein concentration of breast milk compared to infant formula influences infants’ growth and body composition. Thus, several trials in formula-fed infants with different protein intake levels have been performed to test this hypothesis. In this review, we discuss the current evidence on low-protein infant formula and obesity risk, including future perspectives and implications

    Protein Concentration in Milk Formula, Growth, and Later Risk of Obesity: A Systematic Review

    No full text
    Background: Protein intake may influence important health outcomes in later life. Objective: The objective of this study was to investigate current evidence on the effects of infant formulas and follow-on formulas with different protein concentrations on infants' and children's growth, body composition, and later risk of overweight and obesity. Methods: In this systematic review, we searched electronic databases (including MEDLINE, Embase, and the Cochrane Library) up until November 2014 for randomized controlled trials (RCTs). Eligible studies had to include children aged 0-3 y who represented the general population and were fed cow milk-based infant formulas with variations in protein concentration. Control groups received lower-protein cow milk-based formulas (as defined by the authors). The primary outcomes were growth, overweight, obesity, and adiposity. Various time points for outcomes assessment were accepted for inclusion. If possible, a meta-analysis was performed. Results: Twelve RCTs met our inclusion criteria. Different formula protein concentrations did not affect linear growth other than a transient effect on mean length at 3 mo observed in a meta-analysis of 4 studies (mean difference, -0.27 cm; 95% CI: -0.52, -0.02). Lower mean weight and weight z scores obtained from the infants fed lower-protein formulas were observed only from 6 to 12 mo of age. Data from one large RCT showed that consumption of a lower-protein infant formula may reduce body mass index at 12 mo of age and later (12 mo, 24 mo, and 6y) and the risk of obesity at 6 y. Effects on body composition remained unclear. Conclusions: The current evidence is insufficient for assessing the effects of reducing the protein concentration in infant formulas on long-term outcomes, but, if confirmed, this could be a promising intervention for reducing the risk of overweight and obesity in children. In view of the limited available evidence, more studies replicating effects on long-term health outcomes are neede

    The Association between Breastmilk Glucocorticoid Concentrations and Macronutrient Contents Throughout the Day

    No full text
    BACKGROUND: Glucocorticoids (GCs) in breastmilk follow the maternal hypothalamus⁻pituitary⁻adrenal axis activity and may affect the offspring's growth and neurodevelopment. There is some evidence suggesting that macronutrients in breastmilk also fluctuate throughout the day. We aimed to research whether GCs and macronutrients are correlated in multiple breastmilk samples obtained over a 24-h period. METHODS: A total of 10 mothers provided 45 breastmilk samples collected over a 24-h period. Cortisol and cortisone levels were determined by LC⁻MS/MS, and macronutrients were measured with mid-infrared spectroscopy. Correlations between breastmilk GCs and macronutrients were assessed with Pearson correlations and linear mixed models. RESULTS: No associations were found between breastmilk GCs and macronutrients (cortisol: β-0.1 (95% confidence interval: -1.0 to 0.7), -4.9 (-12.9 to 3.1) for fat, protein, and carbohydrates, respectively; and -0.3 (-5.6 to 5.0) and cortisone: 0.0 (-2.5 to 2.5), -17.4 (-39.8 to 5.0), and -2.7 (-17.7 to 12.3)) for fat, protein, and carbohydrates, respectively. Adjusting for the time of collection to account for GC rhythmicity did not change the results. CONCLUSION: We found no associations between GCs and macronutrients in human breastmilk. The excretion of GCs in breastmilk and the effects of breastmilk GCs on offspring are, therefore, likely independent of the excretion and effects of the macronutrients

    The Association between Breastmilk Glucocorticoid Concentrations and Macronutrient Contents Throughout the Day

    No full text
    Background: Glucocorticoids (GCs) in breastmilk follow the maternal hypothalamus&#8315;pituitary&#8315;adrenal axis activity and may affect the offspring&#8217;s growth and neurodevelopment. There is some evidence suggesting that macronutrients in breastmilk also fluctuate throughout the day. We aimed to research whether GCs and macronutrients are correlated in multiple breastmilk samples obtained over a 24-h period. Methods: A total of 10 mothers provided 45 breastmilk samples collected over a 24-h period. Cortisol and cortisone levels were determined by LC&#8315;MS/MS, and macronutrients were measured with mid-infrared spectroscopy. Correlations between breastmilk GCs and macronutrients were assessed with Pearson correlations and linear mixed models. Results: No associations were found between breastmilk GCs and macronutrients (cortisol: &#946;-0.1 (95% confidence interval: &#8722;1.0 to 0.7), &#8722;4.9 (&#8722;12.9 to 3.1) for fat, protein, and carbohydrates, respectively; and &#8722;0.3 (&#8722;5.6 to 5.0) and cortisone: 0.0 (&#8722;2.5 to 2.5), &#8722;17.4 (&#8722;39.8 to 5.0), and &#8722;2.7 (&#8722;17.7 to 12.3)) for fat, protein, and carbohydrates, respectively. Adjusting for the time of collection to account for GC rhythmicity did not change the results. Conclusion: We found no associations between GCs and macronutrients in human breastmilk. The excretion of GCs in breastmilk and the effects of breastmilk GCs on offspring are, therefore, likely independent of the excretion and effects of the macronutrients

    No Association between Glucocorticoid Diurnal Rhythm in Breastmilk and Infant Body Composition at 3 Months

    No full text
    OBJECTIVE: Glucocorticoids (GCs) in breastmilk have previously been associated with infant body growth and body composition. However, the diurnal rhythm of breastmilk GCs was not taken into account, and we therefore aimed to assess the associations between breastmilk GC rhythmicity at 1 month and growth and body composition at 3 months in infants. METHODS: At 1 month postpartum, breastmilk GCs were collected over a 24-h period and analyzed by LC-MS/MS. Body composition was measured using air-displacement plethysmography at 3 months. Length and weight were collected at 1, 2, and 3 months. RESULTS: In total, 42 healthy mother-infant pairs were included. No associations were found between breastmilk GC rhythmicity (area-under-the-curve increase and ground, maximum, and delta) and infant growth trajectories or body composition (fat and fat free mass index, fat%) at 3 months. CONCLUSIONS: This study did not find an association between breastmilk GC rhythmicity at 1 month and infant's growth or body composition at 3 months. Therefore, this study suggests that previous observations linking breastmilk cortisol to changes in infant weight might be flawed by the lack of serial cortisol measurements and detailed information on body composition
    corecore