5 research outputs found

    Distinct Mode of Interaction of a Novel Ketolide Antibiotic That Displays Enhanced Antimicrobial Activity â–¿

    No full text
    Ketolides represent the latest generation of macrolide antibiotics, displaying improved activities against some erythromycin-resistant strains, while maintaining their activity against erythromycin-susceptible ones. In this study, we present a new ketolide, K-1325, that carries an alkyl-aryl side chain at C-13 of the lactone ring. According to our genetic and biochemical studies, K-1325 binds within the nascent polypeptide exit tunnel, at a site previously described as the primary attachment site of all macrolide antibiotics. Compared with telithromycin, K-1325 displays enhanced antimicrobial activity against wild-type Escherichia coli strains, as well as against strains bearing the U2609C mutation in 23S rRNA. Chemical protection experiments showed that the alkyl-aryl side chain of K-1325 interacts specifically with helix 35 of 23S rRNA, a fact leading to an increased affinity of U2609C mutant ribosomes for the drug and rationalizing the enhanced effectiveness of this new ketolide

    Conjugation with polyamines enhances the antibacterial and anticancer activity of chloramphenicol

    No full text
    Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine-CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N-8,N-8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3'-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3'-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself
    corecore