7 research outputs found

    Multi-Microphone Noise Reduction for Hearing Assistive Devices

    No full text
    The paramount importance of good hearing in everyday life has driven an exploration into the improvement of hearing capabilities of (hearing impaired) people in acoustic challenging situations using hearing assistive devices (HADs). HADs are small portable devices, which primarily aim at improving the intelligibility of an acoustic source that has drawn the attention of the HAD user. One of the most important steps to achieve this is via filtering the sound recorded using the HAD microphones, such that ideally all unwanted acoustic sources in the acoustic scene are suppressed, while the target source is maintained undistorted. Modern HAD systems often consist of two collaborative (typically wirelessly connected) HADs, each placed on a different ear. These HAD systems are commonly referred to as binaural HAD systems. In a binaural HAD system, each HAD has typically more than one microphone forming a small local microphone array. The two HADs merge their microphone arrays forming a single larger microphone array. This provides more degrees of freedom for noise reduction. The multi-microphone noise reduction filters are commonly referred to as beamformers, and the beamformers designed for binaural HAD systems are commonly referred to as binaural beamformers.Circuits and System

    Improved multi-microphone noise reduction preserving binaural cues

    No full text
    We propose a new multi-microphone noise reduction technique for binaural cue preservation of the desired source and the interferers. This method is based on the linearly constrained minimum variance (LCMV) framework, where the constraints are used for the binaural cue preservation of the desired source and of multiple interferers. In this framework there is a trade-off between noise reduction and binaural cue preservation. The more constraints the LCMV uses for preserving binaural cues, the less degrees of freedom can be used for noise suppression. The recently presented binaural LCMV (BLCMV) method and the optimal BLCMV (OBLCMV) method require two constraints per interferer and introduce an additional interference rejection parameter. This unnecessarily reduces the degrees of freedom, available for noise reduction, and negatively influences the trade-off between noise reduction and binaural cue preservation. With the proposed method, binaural cue preservation is obtained using just a single constraint per interferer without the need of an interference rejection parameter. The proposed method can simultaneously achieve noise reduction and perfect binaural cue preservation of more than twice as many interferers as the BLCMV, while the OBLCMV can preserve the binaural cues of only one interferer.Accepted Author ManuscriptCircuits and System

    Distributed Rate-Constrained LCMV Beamforming

    No full text
    In this letter, we propose a decentralized framework for rate-distributed linearly constrained minimum variance (LCMV) beamforming in wireless acoustic sensor networks. To save the energy usage within the network, we propose to minimize the transmission cost and put a constraint on the noise reduction performance. Subsequently, we decentralize the obtained LCMV filter structure by exploiting an imposed block diagonal form of the noise correlation matrix. As a result, the beamformer weights are calculated in a decentralized fashion and each node can determine its quantization rate locally. Finally, numerical results validate the proposed method.Circuits and System

    A Low-Cost Robust Distributed Linearly Constrained Beamformer for Wireless Acoustic Sensor Networks with Arbitrary Topology

    No full text
    We propose a new robust distributed linearly constrained beamformer which utilizes a set of linear equality constraints to reduce the cross power spectral density matrix to a block-diagonal form. The proposed beamformer has a convenient objective function for use in arbitrary distributed network topologies while having identical performance to a centralized implementation. Moreover, the new optimization problem is robust to relative acoustic transfer function (RATF) estimation errors and to target activity detection (TAD) errors. Two variants of the proposed beamformer are presented and evaluated in the context of multi-microphone speech enhancement in a wireless acoustic sensor network, and are compared with other state-of-the-art distributed beamformers in terms of communication costs and robustness to RATF estimation errors and TAD errors.Circuits and System

    Robust Joint Estimation of Multimicrophone Signal Model Parameters

    No full text
    One of the biggest challenges in multimicrophone applications is the estimation of the parameters of the signal model, such as the power spectral densities (PSDs) of the sources, the early (relative) acoustic transfer functions of the sources with respect to the microphones, the PSD of late reverberation, and the PSDs of microphone-self noise. Typically, existing methods estimate subsets of the aforementioned parameters and assume some of the other parameters to be known a priori. This may result in inconsistencies and inaccurately estimated parameters and potential performance degradation in the applications using these estimated parameters. So far, there is no method to jointly estimate all the aforementioned parameters. In this paper, we propose a robust method for jointly estimating all the aforementioned parameters using confirmatory factor analysis. The estimation accuracy of the signal-model parameters thus obtained outperforms existing methods in most cases. We experimentally show significant performance gains in several multimicrophone applications over state-of-the-art methods.Accepted author manuscriptCircuits and System

    A Convex Approximation of the Relaxed Binaural Beamfomring Optimization Problem

    Get PDF
    The recently proposed relaxed binaural beamforming (RBB) optimization problem provides a flexible tradeoff between noise suppression and binaural-cue preservation of the sound sources in the acoustic scene. It minimizes the output noise power, under the constraints, which guarantee that the target remains unchanged after processing and the binaural-cue distortions of the acoustic sources will be less than a user-defined threshold. However, the RBB problem is a computationally demanding non convex optimization problem. The only existing suboptimal method which approximately solves the RBB is a successive convex optimization (SCO) method which, typically, requires to solve multiple convex optimization problems per frequency bin, in order to converge. Convergence is achieved when all constraints of the RBB optimization problem are satisfied. In this paper, we propose a semidefinite convex relaxation (SDCR) of the RBB optimization problem. The proposed suboptimal SDCR method solves a single convex optimization problem per frequency bin, resulting in a much lower computational complexity than the SCO method. Unlike the SCO method, the SDCR method does not guarantee user-controlled upper-bounded binaural-cue distortions. To tackle this problem, we also propose a suboptimal hybrid method that combines the SDCR and SCO methods. Instrumental measures combined with a listening test show that the SDCR and hybrid methods achieve significantly lower computational complexity than the SCO method, and in most cases better tradeoff between predicted intelligibility and binaural-cue preservation than the SCO method.Circuits and System

    Relaxed Binaural LCMV Beamforming

    No full text
    In this paper, we propose a new binaural beamforming technique, which can be seen as a relaxation of the linearly constrained minimum variance (LCMV) framework. The proposed method can achieve simultaneous noise reduction and exact binaural cue preservation of the target source, similar to the binaural minimum variance distortionless response (BMVDR) method. However, unlike BMVDR, the proposed method is also able to preserve the binaural cues of multiple interferers to a certain predefined accuracy. Specifically, it is able to control the trade-off between noise reduction and binaural cue preservation of the interferers by using a separate trade-off parameter per-interferer. Moreover, we provide a robust way of selecting these trade-off parameters in such a way that the preservation accuracy for the binaural cues of the interferers is always better than the corresponding ones of the BMVDR. The relaxation of the constraints in the proposed method achieves approximate binaural cue preservation of more interferers than other previously presented LCMV-based binaural beamforming methods that use strict equality constraints.Accepted Author ManuscriptCircuits and System
    corecore