13 research outputs found

    Thymosin β10 Expression Driven by the Human TERT Promoter Induces Ovarian Cancer-Specific Apoptosis through ROS Production

    Get PDF
    Thymosin β10 (Tβ10) regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ10 diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ10, that can overexpress the Tβ10 gene in cancer cells. This was accomplished by replacing the native Tβ10 gene promoter with the human TERT promoter in Ad.TERT.Tβ10. We investigated the cancer suppression activity of Tβ10 and found that Ad.TERT.Tβ10 strikingly induced cancer-specific expression of Tβ10 as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ10 decreased mitochondrial membrane potential and increased reactive oxygen species (ROS) production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ10 overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ10 by Ad.TERT.Tβ10 could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells

    Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors

    Get PDF
    Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)
    corecore