50 research outputs found
Régénération Naturelle Assistée Du Teck (Tectona Grandis L. F.) Dans La Forêt Classée De La Lama Au Bénin
La régénération naturelle assistée, technique utilisée pour favoriser le développement du potentiel adventif et du potentiel séminal des arbres, est un mode de reproduction adopté de nos jours pour renouveler et pérenniser les formations forestières. La présente étude a été réalisée dans les plantations de la forêt classée de la Lama, situées entre 6°55' et 7°00' de latitude Nord et entre 2°4' et 2°12' de longitude Est. Elle vise à proposer une technique de régénération naturelle assistée peu coûteuse adaptée aux peuplements de teck installés sur des vertisols hydromorphes. Trois méthodes de régénérations naturelles assistées ont été testées sur quatre types de sols (vertisol argilosableux, vertisol argileux, vertisol argilo-calcaire et vertisols argilo-calcaire superficiel). Pour chaque traitement sur chaque type de sol, deux placeaux carrées de 100 m2 ont été matérialisés avec chacun huit placettes de 4 m2. La régénération a été inventoriée dans chaque placette et des relevés ont été effectués par rapport au nombre, hauteur et circonférence au collet des jeunes plants. L’évaluation des coûts de la méthode a été réalisée grâce à une comptabilité analytique régulière prenant en compte toutes les dépenses d’installation et de maintenance des parcelles expérimentales. La densité, hauteur et circonférence au collet varient significativement en fonction des types de sol. Toutefois, les plants sont plus développés en hauteur et en circonférence au collet dans les interlignes que sur les lignes. La régénération sur sol non travaillé est le moins coûteuse et donc celui à recommander aux gestionnaires des teckeraies de la Lama.
Assisted natural regeneration is a technique used to promote the development of the seminal potential of trees. Actually, it is a mode of reproduction adopted to renew and sustain the forests. This study was carried out in the plantations of the Lama reserve (between 6° 55' and 7° 00' north and between 2° 4'and 2° 12' east). It aims to propose an inexpensive assisted natural regeneration method adapted to teak stands installed on hydromorphic vertisols. Three assisted natural regeneration methods were tested on four soil types ((clay-sandy vertisol, clay vertisol, clay-limestone vertisol, and superficial clay-limestone vertisols). For each treatment about each type of soil, two square plots (100 m2) were materialized with eight plots of 4 m2 each one. Regeneration was inventoried in each plot and data are collected about number, height, and circumference at the neck of seeding. The production costs were assessed through regular cost accounting taking into account all the installation and maintenance expenses of the experimental plots. From the results, density, height, and collar circumference vary significantly with soil types. However, the seedlings are more developed in height and circumference at the collar in the interlinings than on the lines. Regeneration on unworked soil is the least expensive and therefore the one to recommend to managers of teak plantations of the Lama
Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks
These authors contributed equally: Alpha K. Keita, Fara R. Koundouno, Martin Faye, Ariane Düx, Julia Hinzmann.International audienc
Development and Testing of the Method for the Detection of Lassa virus RNA, Based on real-Time Polymerase Chain reaction with reverse Transcription
Abstract. Objective of the study was the development of a method for the detection and quantitative analysis (realtime RT-PCR) to identify genetic markers of Lassa virus - LASV-Fl. Materials and methods. We utilized all the available in the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) Lassa virus sequences that have been aligned to identify conservative sites applying the BioEdit 7.2.5 software package (IbisBiosciences, USA). To test the developed PCR kit, the control panel of Lassa virus RNA and pseudo-viral particles, 27 viral strains belonging to different families, as well as 37 serum samples from patients with feverish diseases selected in medical institutions of the Republic of Guinea in 2016-2018 and 55 samples of organ suspensions from multi-spiked mice were used. Results and discussion. The analytical sensitivity of the method varied from 103 copies/ml to 105 copies/ml and had 96.4 % diagnostic sensitivity, while the analytical and diagnostic specificity was 100 %. It is shown that the developed technique can be successfully introduced into practice for the detection of Lassa virus in the Republic of Guinea, using various types of material from small mammals, including whole blood and organ suspensions of M. natalensis, as well as samples of human blood sera collected 3-7 days after the onset of the disease. It is also suggested that this method can be used for strains of Lassa virus, common not only in Guinea but also in other endemic areas, but this fact must be confirmed in further studies
Standardization of Clinical Assessment and Sample Collection Across All PERCH Study Sites.
BACKGROUND.: Variable adherence to standardized case definitions, clinical procedures, specimen collection techniques, and laboratory methods has complicated the interpretation of previous multicenter pneumonia etiology studies. To circumvent these problems, a program of clinical standardization was embedded in the Pneumonia Etiology Research for Child Health (PERCH) study. METHODS.: Between March 2011 and August 2013, standardized training on the PERCH case definition, clinical procedures, and collection of laboratory specimens was delivered to 331 clinical staff at 9 study sites in 7 countries (The Gambia, Kenya, Mali, South Africa, Zambia, Thailand, and Bangladesh), through 32 on-site courses and a training website. Staff competency was assessed throughout 24 months of enrollment with multiple-choice question (MCQ) examinations, a video quiz, and checklist evaluations of practical skills. RESULTS.: MCQ evaluation was confined to 158 clinical staff members who enrolled PERCH cases and controls, with scores obtained for >86% of eligible staff at each time-point. Median scores after baseline training were ≥80%, and improved by 10 percentage points with refresher training, with no significant intersite differences. Percentage agreement with the clinical trainer on the presence or absence of clinical signs on video clips was high (≥89%), with interobserver concordance being substantial to high (AC1 statistic, 0.62-0.82) for 5 of 6 signs assessed. Staff attained median scores of >90% in checklist evaluations of practical skills. CONCLUSIONS.: Satisfactory clinical standardization was achieved within and across all PERCH sites, providing reassurance that any etiological or clinical differences observed across the study sites are true differences, and not attributable to differences in application of the clinical case definition, interpretation of clinical signs, or in techniques used for clinical measurements or specimen collection
Association of C-reactive protein with bacterial and respiratory syncytial virus-associated pneumonia among children aged <5 years in the PERCH study
Background. Lack of a gold standard for identifying bacterial and viral etiologies of pneumonia has limited evaluation of C-reactive protein (CRP) for identifying bacterial pneumonia. We evaluated the sensitivity and specificity of CRP for identifying bacterial vs respiratory syncytial virus (RSV) pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) multicenter case-control study. Methods. We measured serum CRP levels in cases with World Health Organization-defined severe or very severe pneumonia and a subset of community controls. We evaluated the sensitivity and specificity of elevated CRP for "confirmed" bacterial pneumonia (positive blood culture or positive lung aspirate or pleural fluid culture or polymerase chain reaction [PCR]) compared to "RSV pneumonia" (nasopharyngeal/oropharyngeal or induced sputum PCR-positive without confirmed/suspected bacterial pneumonia). Receiver operating characteristic (ROC) curves were constructed to assess the performance of elevated CRP in distinguishing these cases. Results. Among 601 human immunodeficiency virus (HIV)-negative tested controls, 3% had CRP ≥40 mg/L. Among 119 HIVnegative cases with confirmed bacterial pneumonia, 77% had CRP ≥40 mg/L compared with 17% of 556 RSV pneumonia cases. The ROC analysis produced an area under the curve of 0.87, indicating very good discrimination; a cut-point of 37.1 mg/L best discriminated confirmed bacterial pneumonia (sensitivity 77%) from RSV pneumonia (specificity 82%). CRP ≥100 mg/L substantially improved specificity over CRP ≥40 mg/L, though at a loss to sensitivity. Conclusions. Elevated CRP was positively associated with confirmed bacterial pneumonia and negatively associated with RSV pneumonia in PERCH. CRP may be useful for distinguishing bacterial from RSV-associated pneumonia, although its role in discriminating against other respiratory viral-associated pneumonia needs further study
Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study
Background
Pneumonia is the leading cause of death among children younger than 5 years. In this study, we estimated causes of pneumonia in young African and Asian children, using novel analytical methods applied to clinical and microbiological findings.
Methods
We did a multi-site, international case-control study in nine study sites in seven countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. All sites enrolled in the study for 24 months. Cases were children aged 1–59 months admitted to hospital with severe pneumonia. Controls were age-group-matched children randomly selected from communities surrounding study sites. Nasopharyngeal and oropharyngeal (NP-OP), urine, blood, induced sputum, lung aspirate, pleural fluid, and gastric aspirates were tested with cultures, multiplex PCR, or both. Primary analyses were restricted to cases without HIV infection and with abnormal chest x-rays and to controls without HIV infection. We applied a Bayesian, partial latent class analysis to estimate probabilities of aetiological agents at the individual and population level, incorporating case and control data.
Findings
Between Aug 15, 2011, and Jan 30, 2014, we enrolled 4232 cases and 5119 community controls. The primary analysis group was comprised of 1769 (41·8% of 4232) cases without HIV infection and with positive chest x-rays and 5102 (99·7% of 5119) community controls without HIV infection. Wheezing was present in 555 (31·7%) of 1752 cases (range by site 10·6–97·3%). 30-day case-fatality ratio was 6·4% (114 of 1769 cases). Blood cultures were positive in 56 (3·2%) of 1749 cases, and Streptococcus pneumoniae was the most common bacteria isolated (19 [33·9%] of 56). Almost all cases (98·9%) and controls (98·0%) had at least one pathogen detected by PCR in the NP-OP specimen. The detection of respiratory syncytial virus (RSV), parainfluenza virus, human metapneumovirus, influenza virus, S pneumoniae, Haemophilus influenzae type b (Hib), H influenzae non-type b, and Pneumocystis jirovecii in NP-OP specimens was associated with case status. The aetiology analysis estimated that viruses accounted for 61·4% (95% credible interval [CrI] 57·3–65·6) of causes, whereas bacteria accounted for 27·3% (23·3–31·6) and Mycobacterium tuberculosis for 5·9% (3·9–8·3). Viruses were less common (54·5%, 95% CrI 47·4–61·5 vs 68·0%, 62·7–72·7) and bacteria more common (33·7%, 27·2–40·8 vs 22·8%, 18·3–27·6) in very severe pneumonia cases than in severe cases. RSV had the greatest aetiological fraction (31·1%, 95% CrI 28·4–34·2) of all pathogens. Human rhinovirus, human metapneumovirus A or B, human parainfluenza virus, S pneumoniae, M tuberculosis, and H influenzae each accounted for 5% or more of the aetiological distribution. We observed differences in aetiological fraction by age for Bordetella pertussis, parainfluenza types 1 and 3, parechovirus–enterovirus, P jirovecii, RSV, rhinovirus, Staphylococcus aureus, and S pneumoniae, and differences by severity for RSV, S aureus, S pneumoniae, and parainfluenza type 3. The leading ten pathogens of each site accounted for 79% or more of the site's aetiological fraction.
Interpretation
In our study, a small set of pathogens accounted for most cases of pneumonia requiring hospital admission. Preventing and treating a subset of pathogens could substantially affect childhood pneumonia outcomes
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats
In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security