33 research outputs found

    A review of key environmental and energy performance indicators for the case of Renewable Energy Systems when integrated with storage solutions.

    Get PDF
    During the last years a variety of numerical tools and algorithms have been developed aiming at quantifying and measuring the environmental impact of multiple types of energy systems, as those based on Renewable Energy Sources. Plenty of studies have proposed the use of a Life Cycle Assessment methodology, to determine the environmental impact of renewable installations when coupled with storage solutions, based on a pre-selected repository of Key Performance Indicators. The main scope of this paper is to propose a limited number of best fitting, and at the same time easily adaptable to various configurations, list of KPIs for the case of renewable energy systems. This is done by capitalizing on the environmental and energy performance KPIs tracked in the open literature (e.g. “Global Warming Potential”, “Energy Payback Time”, “Battery Total Degradation”, “Energy Stored on Invested”, “Cumulative Energy Demand”) and/or other proposing new simple, scalable and adaptable ones, (e.g. “Embodied Energy for Infrastructure of Materials and for the building system”, “Life Cycle CO2 Emissions”, “Reduction of the Direct CO2 emissions”, “Avoided CO2 Emissions”, “CO2 equivalent Payback Time”). Moreover, the proposed KPIs are distributed according to the individual phases of the entire life-cycle of a related component of a renewable energy system, each time the environmental impact refers to, i.e. manufacturing, operational and end-of-life. Apart from that, the current paper presents a necessary base grounded approach, which can be followed for a holistic approach in environmental point of view of renewable-based technologies, by addressing the potential competing interests of the relevant stakeholders (e.g. profit for the market operator in contrast to low-cost services for the consumer). All in all, the scalar quantification of the environmental impact of multiple energy systems, through a list of proposed assessment criteria, being evaluated in terms of the selected repository of KPIs, enables the comparison on a fair basis of the available energy systems, irrespective if they are fossil-fuel or RES based ones. As a typical example, a simple standard model of a photovoltaic integrated with an electric battery is selected, for which indicative indicators are provide

    Water-saving techniques for restoring desertified lands : Some lessons from the field

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICNature-based solutions can significantly contribute to restoration projects in areas affected by desertification processes, where they are necessary for reversing land degradation. Currently, one innovative solution is The Cocoon™, which has been designed as a new ecotechnology for improving seedling establishment. The Cocoon consists of a doughnut-shaped container made of recycled cardboard that provides water and shelter at least during the first year of a seedling, which is the most critical for plant establishment. To determine the effectiveness of this ecotechnology under different conditions, the Cocoon was tested on a variety of soils, climates, vegetation, and land uses. Six planting trials were performed in Spain and Greece, which covered a range from humid to arid climates. With the objective of studying its functionality, the survival of the seedlings, their vigor, and growth were monitored for 2 years. Compared with conventional planting systems, the Cocoon has effectively increased seedling survival, especially under dry growing conditions (low rainfall, soils with low water holding capacity). The Cocoon also allowed for higher growth of some species (olive trees, holm oaks, and Aleppo pines). Moreover, a positive correlation between the rainfall on the site and the biodegradation degree of the Cocoon device was observed. Overall, the Cocoon becomes more efficient in arid climates or adverse growing conditions

    Survey and Design Consistency Evaluation in Two-Lane Rural Road Segments

    Full text link
    -The present research proposes a time and cost-effective methodology to survey and perform a design consistency evaluation in two-lane rural road segments. The implementation of the proposed methodology carried out in Central Greece and more particularly along the national road Volos-Karditsa, from the local community Mikrothives up to the entrance of the Volos municipal unit. The road survey methodology, the process of creating the terrain model as well as the cross-check between the designed road with the requirements included in the Greek Road Design Guidelines Manual-Chapter X, are analytically presented. Similar checks are also performed for the sight distance throughout the road segments aiming to enable the rehabilitation of existing rural roads and enhance their safety level. The design of the road was followed by the execution of an experiment with the participation of a motorcycle rider aiming at the recording of his trajectory throughout the road which was then compared with its geometry. The experiment carried out by exploiting an instrumented vehicle and GPS technology. Several conclusions were drawn regarding the encroachment of the centerline and the deviation from the theoretical trajectory in the middle of the travelled way. Subsequently, the proposed methodology provides a reliable and simple solution of surveying and evaluating a 2-lane rural road in safety terms. © 2022, World Scientific and Engineering Academy and Society. All rights reserved

    Life cycle GHG emission reduction of hydrotreated vegetable oil integration in an industrial petroleum refinery

    Full text link
    The purpose of this paper is to perform a comprehensive Life Cycle Assessment to evaluate the environmental performance, in terms of GHG emissions, of co-processing Used Cooking Oil (UCO) with fossil light gas oil into a current diesel hydrotreater unit at an industrial refinery, located in Northern Greece. Two scenarios have been defined and compared, considering: (i) the hydrodesulphurization process of light gas oil for the production of conventional ultralow sulphur diesel fuel (reference scenario), and (ii) the integration of pre-treated UCO along with conventional fossil feed at 5/95% volume ratio, for the production of Hydrotreated Vegetable Oil (HVO) (retrofit scenario). The results of the LCA analysis show that the net life cycle GHG emissions associated with fossil diesel production amount to 103.41 gCO2eq/MJ, while the relevant ones related to the HVO/blended diesel production are 95.42 gCO2eq/MJ. A considerable GHG emissions reduction (about 7.7%) will be incurred by the substitution of conventional fossil diesel fuel with the HVO blended diesel one. A newbuild refining facility using exclusively used cooking oil as feedstock could further increase the GHG emission savings up to 93%, indicating that additional research is required regarding the environmental performance of sustainable fuel production processes. Furthermore, alternative sources of biomass feedstock need to be investigated, because of the maximum cap on used cooking oil set in the Renewable Energy Directive (RED II) legislation

    Chapter 6 Energy and the Environment

    Full text link
    Abstract This chapter summarizes the fundamentals of the main technologies implemented for power production worldwide, by also analyzing their overall environmental impact. A holistic approach on presenting the basics, benefits, and drawbacks of each technology has been attempted, aiming to the current trends on policies for emissions mitigation and R&D advances in clean energy systems. The reader is also introduced to research tools for process engineering and Life Cycle Analysis, basically referring to solid fuel systems design and optimization. Overall, fossil fuel, renewable, hydrogen, and nuclear energy systems are presented through the lenses of their quantified societal, economic, and environmental implications, as well as the future prospects for their implementation

    LIFE The Green Link: restaurando areas degradadas con la ecotecnología cocoon

    Full text link
    Trabajo presentado en la IV Reunión conjunta del Grupo de Trabajo de Repoblaciones Forestales de la SECF y el Grupo de Trabajo de Restauración Ecológica de la AEET, celebrada en Alcázar de San Juan (Ciudad Real, España) del 17 al 19 de octubre de 2018Los impactos del cambio climático cada vez son más perceptibles en el área mediterránea, reduciendo de forma significativa la disponibilidad de agua y aumentado la recurrencia e intensidad de los períodos de sequía. En este contexto, los proyectos de restauración ambiental (forestal i/o agrícola) que incluyen la plantación de especies leñosas, ven cómo cada vez se incrementan más las marras y se dificulta el establecimiento de los plantones. The Green Link es un proyecto LIFE colaborativo (LIFE15 CCA/ES/000125) que tiene como objetivo demostrar los beneficios ambientales y económicos de un método de plantación innovador. Éste método consiste en reemplazar los procedimientos de plantación tradicionales por el “Cocoon”, un dispositivo biodegradable de bajo coste que suministra agua a los plantones durante los primeros meses. Con el objetivo de demostrar la viabilidad y potencialidad del Cocoon, los socios del proyecto han plantado una variedad de especies forestales en distintos tipos de suelos de la cuenca mediterránea y las Islas Canarias, con un gradiente que va desde climas semiáridos hasta los extremadamente áridos. En total, 7 áreas experimentales localizadas en Italia, Grecia, la Península Ibérica y las Islas Canarias, dónde se han plantado 73 ha con 30 especies de árboles y arbustos (forestales y agrícolas). En algunos casos se han acompañado de siembras para favorecer cubiertas verdes que protejan al suelo de la erosión e incrementen su fertilidad. Los principales resultados que se esperan del proyecto son: 1. Demostrar que el Cocoon permite plantar especies leñosas en climas secos y suelos pobres, con índices de supervivencia y establecimiento más altos que las técnicas tradicionales 2. Ofrecer una solución de mercado competitiva para plantar sin necesidad de riego 3. Mejorar la calidad del suelo a largo plazo mediante el uso de micorrizas y microorganismos facilitadores introducidos mediante las labores de siembra y plantación 4. Mejorar los servicios ecosistémicos de las áreas restauradas fomentando la economía verde, ayudando a la creación de empleo, y en definitiva fomentando la fijación de población en las zonas rurales Los resultados preliminares de la campaña de seguimiento realizada en mayo de 2018 muestran tasas de supervivencia y establecimiento de los plantones cercanas al 70%, aunque en algunos casos la supervivencia llega al 100% y en otros es inferior al 50%. En general, la percepción de los propietarios agrícolas y forestales, y de las administraciones involucradas es muy positiva, y las acciones de replicación del proyecto están superando las expectativas.Peer reviewe

    The Green Link Project: Restore desertified areas with an innovative tree growing method across the mediterranean basin to increase resilience

    Full text link
    Trabajo presentado en el 1st World Conference on Soil and Water Conservation under Global Change (CONSOWA), celebrado en Lleida del 12 al 16 de junio de 2017Desertification is defined as “land degradation in arid, semiarid and sub-humid areas resulting from various factors, including climatic variations and human activities” (UNCCD, 2013). In this sense, soil degradation is one of the most threatening consequences of climate change. Approximately 45% of soils in Europe are in a vulnerable state and 15% even being considered extremely vulnerable. Some southern parts of the EU, including Spain, Greece, Portugal, Italy and France (Corsica) are significantly affected (EEA, 2008). Soil degradation problems not only have environmental implications: more and more agricultural land are degrading and their cultivation becoming unprofitable, adding serious economic problems to rural areas already weakened by depopulation. This project aims to compensate impacts of climate change and contribute to increase resilience of Mediterranean ecosystems, specifically in Spain, Greece and Italy. There is a huge number of studies on the potential impacts of climate change on water resources which involve many different approaches. A common element is the reduction of water availability for forest ecosystems and for irrigation purposes across all regions (EEA, 2012). Reforestation and afforestation efforts in the Mediterranean region cannot be called cost-efficient currently, since the percentages of growth failure and seedling mortality rates are extremely high, mainly when broadleaved resprouting species (e.g. Quercus species) where planted (Vallejo et al 2012).This project is funded by the LIFE program (LIFE15 CCA/ES/000125).Peer reviewe

    LIFE The Green Link: restoring degraded areas with the cocoon ecotechnology

    Full text link
    Trabajo presentado en TERRAenVISION Environmental Issues Today: Scientific Solutions for Societal Issues, celebrado en Barcelona (España) del 27 de enero al 2 de febrero de 2018The impacts of climate change in the Mediterranean area are becoming increasingly perceptible. Many semi-arid regions are suffering significant declines in water availability. This led to faster desertification and to increase forest fires occurrence. Therefore, implementing adaptation and mitigation measures is needed to reduce the vulnerability of these Mediterranean ecosystems and strengthening their resilience. The Green Link is a collaborative LIFE project (LIFE15 CCA/ES/000125) that aims to demonstrate the environmental and economic benefits of an innovative tree growing method. This consists of replacing traditional planting techniques with the ¿Cocoon¿, a low-cost and biodegradable device that improves water supply to seedlings during the first months. To prove the viability of the Cocoon technology and demonstrate its potential, the project has planted a variety of woody species on different soil types located in areas on a climate gradient from semi-dry to extremely dry across the Mediterranean basin and the Canary Islands. As a whole, 7 experimental areas located in Italy, Greece and Spain, covering more than 70 ha and 30 plant species (4 subspecies). The main expected results of the project are: 1. Demonstrate that the Cocoon technology allows planting woody species in dry climates and poor soils to combat desertification phenomena. 2. Offer a competitive market solution to plant trees without the need of irrigation, using the Cocoon device. 3. Improve long-term soil quality through microorganisms and mycorrhiza facilitation that will enhance the association among roots and soil. 4. Improve ecosystem services, mainly by increasing biodiversity and soil carbon stock over time. First characterization of the seedlings, planted autumn-winter 2016-17, was conducted in May-June 2017, according to a monitoring protocol. Despite the measurements were previous to the summer drought, important survival differences were detected between controls and Cocoon treatments. Globally, 9% of the seedlings were classified as dead trees, but referring to the controls this percentage increased to 30% while in Cocoons group the mortality ratio was only 3%.Peer reviewe

    Life the Green Link: la utilización de una nueva técnica de restauración ambiental en un contexto de cambio climático

    Full text link
    Trabajo presentado en la Conferencia Internacional Life+Pinzón, celebrada en Las Palmas de Gran Canarias (España), del 13 al 15 de marzo de 2019El proyecto LIFE+ The Green Link (LIFE15 CCA/ES/000125), “Restauración de zonas desertificadas con un método innovador de establecimiento del arbolado a lo largo del entorno mediterráneo para incrementar la resiliencia” es un proyecto que se encuentra dentro del subprograma de adaptación al cambio climático. Se desarrolla desde julio de 2016 hasta marzo de 2020, contando con socios en cuatro países europeos (España, Italia, Grecia y Holanda) y consiste en probar a gran escala, la utilización de un recipiente (cocoon) que facilita agua a los plantones de árboles durante los primeros estadios de una repoblación, facilitando su implantación inicial y favoreciendo su desarrollo vegetativo. Para ello se ha procedido a plantar un total de 24.000 árboles en 6 parcelas experimentales (4 en España y 1 en Italia y 1 in Grecia). La zona de plantación en Gran Canaria se sitúa en la finca pública de Tifaracás, en el barranco de Tejeda-La Aldea, oeste de la isla, entre las cotas 265 y 515 m.s.n.m., con una precipitación media menor de 200 mm. Se constata, además, la presencia de ganado asilvestrado. La zona de trabajo se divide en dos ámbitos, suroeste y noreste, en función de la orientación. Las plantaciones se realizaron en dos periodos: a finales de 2016 y en la primavera de 2017. Como antecedentes, en el año 2009 se ejecutó una repoblación que logró un 15 % de supervivencia de los ejemplares plantados.. Actualmente, la utilización del cocoon ha incrementado el porcentaje de supervivencia global frente a la plantación testigo en un 7 % (43,6 % de supervivencia frente al 37,04 %). Además, el estado vegetativo de las plantas con cocoon es mejor que en la plantación testigo, ya que el 77 % de las mismas presentan un desarrollo óptimo (ausencia de marchitez o pérdida de hojas), frente a un 52 % de la plantación de control
    corecore