43 research outputs found
Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer
Nanotube patterning may occur naturally upon the spontaneous self-assembly of
biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It
results in periodically alternating bands of surface properties, ranging from
relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single
Chain Mean Field (SCMF) theory has been used to estimate the free energy of
systems in which a surface patterned nanotube penetrates a phospholipid
bilayer. In contrast to un-patterned nanotubes with uniform surface properties,
certain patterned nanotubes have been identified that display a relatively low
and approximately constant system free energy (10 kT) as the nanotube traverses
through the bilayer. These observations support the hypothesis that the
spontaneous self-assembly of bio-molecules on the surface of SWNTs may
facilitate nanotube transduction through cell membranes.Comment: Published in ACS Nano http://pubs.acs.org/doi/abs/10.1021/nn102763
Single spin measurement in the solid state: a reader for a spin qubit
We describe a paradigm for measuring a single electron spin in a solid. This
is a fundamental problem in condensed matter physics. The technique can be used
to read a spin qubit relatively non-invasively in either a spintronic quantum
gate or a spintronic quantum memory. The spin reader can be self assembled by
simple electrochemical techniques and can be integrated with a quantum gate.Comment: 10 pages of text, 4 figure
W18O49 Nanowires as Ultraviolet Photodetector
Photodetectors in a configuration of field effect transistor were fabricated based on individual W18O49 nanowires. Evaluation of electrical transport behavior indicates that the W18O49 nanowires are n-type semiconductors. The photodetectors show high sensitivity, stability and reversibility to ultraviolet (UV) light. A high photoconductive gain of 104 was obtained, and the photoconductivity is up to 60 nS upon exposure to 312 nm UV light with an intensity of 1.6 mW/cm2. Absorption of oxygen on the surface of W18O49 nanowires has a significant influence on the dark conductivity, and the ambient gas can remarkably change the conductivity of W18O49 nanowire. The results imply that W18O49 nanowires will be promising candidates for fabricating UV photodetectors
Light Emission by Nanoporous GaN Produced by a Top-Down, Nonlithographical Nanopatterning
Temperature-dependent photoluminescence (PL) spectroscopy is carried out to probe radiative recombination and related light emission processes in two-dimensional periodic close-packed nanopore arrays in gallium nitride (np-GaN). The arrays were produced by nonlithographic nanopatterning of wurtzite GaN followed by a dry etching. The results of Raman spectroscopy point to a small relaxation of the compressive stress of ~0.24 GPa in nanoporous vs. bulk GaN. At ~300 K, the PL emission is induced by excitons and not free-carrier interband radiative recombinations. An evolution of the emission spectra with T is confirmed to be mainly a result of a decay of nonexcitonic PL emission and less of spectral shifts of the underlying PL bands. A switching of excitonic PL regime observed experimentally was analyzed within the exciton recombination-generation framework. The study provides new insights into the behaviors and physical mechanisms regulating light emission processes in np-GaN, critical to the development of nano-opto-electronic devices based on mesoscopic GaN
Giant photoresistivity and optically controlled switching in self-assembled nanowires
We report the observation of giant photoresistivity in electrochemically self-assembled CdS and ZnSe nanowires electrodeposited in a porous alumina film. The resistance of these nanowires increases by one to two orders of magnitude when exposed to infrared radiation, possibly because of real-space transfer of electrons from the nanowires into the surrounding alumina by photon absorption. This phenomenon has potential applications in ‘‘normally on’’ infrared photodetectors and optically controlled switches