62 research outputs found
Suzaku Observations of the Centaurus Cluster: Absence of Bulk Motions in the Intracluster Medium
The Centaurus cluster (z=0.0104) was observed with the X-ray Imaging
Spectrometer (XIS) onboard the Suzaku X-ray satellite in three pointings, one
centered on the cluster core and the other two offset by +-8' in declination.
To search for possible bulk motions of the intracluster medium, the central
energy of He-like Fe-K line (at a rest-frame energy of 6.7 keV) was examined to
look for a positional dependence. Over spatial scales of 50 kpc to 140 kpc
around the cluster core, the central line energy was found to be constant
within the calibration error of 15 eV. The 90% upper limit on the line-of-sight
velocity difference is |Delta_v|< 1400 km/s, giving a tighter constraint than
previous measurements. The significant velocity gradients inferred from a
previous Chandra study were not detected between two pairs of rectangular
regions near the cluster core. These results suggest that the bulk velocity
does not largely exceed the thermal velocity of the gas in the central region
of the Centaurus cluster. The mean redshift of the intracluster medium was
determined to be 0.0097, in agreement with the optical redshift of the cluster
within the calibration uncertainty. Implications of the present results for the
estimation of the cluster mass are briefly discussed.Comment: 9 pages, 4 figures. Accepted for publication in PASJ. Version with
high-quality color figures at
http://cosmic.riken.jp/ota/publications/index.htm
Performance of anti-SARS-CoV-2 antibody testing in asymptomatic or mild COVID-19 patients: A retrospective study in outbreak on a cruise ship
Objectives: A few studies on antibody testing have focused on asymptomatic or mild coronavirus disease 2019 (COVID-19) patients with low initial anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody responses. Anti-SARS-CoV-2 antibody-testing performance was evaluated using blood samples from asymptomatic or mild COVID-19 patients.Methods: Blood samples were collected from 143 COVID-19 patients during an outbreak on a cruise ship 3 weeks after diagnosis. Simultaneously, a follow-up SARS-CoV-2 genetic test was performed. Samples stored before the COVID-19 pandemic were also used to evaluate the lateral flow immunochromatographic assay (LFA) and electrochemiluminescence immunoassay (ECLIA). Titers of anti-SARS-CoV-2 IgM and IgG antibodies against the nucleocapsid and spike proteins were measured using the enzyme-linked immunosorbent assay to confirm which antibodies were influenced on LFA- and ECLIA- false-negative result in crew-member samples.Results: Sensitivity, specificity, positive-predictive, and negative-predictive values of LFA-detected IgM antibodies were 0.231, 1.000, 1.000, and 0.613, respectively; those of LFA-detected IgG antibodies were 0.483, 0.989, 0.972, and 0.601, respectively; and those of ECLIA-detected total antibodies were 0.783, 1.000, 1.000, and 0.848, respectively. All antibody titers measured using ELISA were significantly lower in blood samples with negative results than in those with positive results in both LFA and ECLIA. In the patients with negative results from the follow-up genetic testing, IgM-, IgG-, and total-antibody positivity rates were 22.9%, 47.6%, and 72.4%, respectively.Conclusions: These findings suggest that anti-SARS-CoV-2 antibody testing has lower performance in asymptomatic or mild COVID-19 patients than required in the guidelines
Pressure-induced superconductivity in AgxBi2-xSe3
We investigated the pressure dependence of electric transport and crystal structure of Ag-doped Bi2Se3. In the sample prepared by Ag doping of Bi2Se3, the Bi atom was partially replaced by Ag, i.e., Ag0.05Bi1.95Se3. X-ray diffraction patterns of Ag0.05Bi1.95Se3 measured at 0–30 GPa showed three different structural phases, with rhombohedral, monoclinic, and tetragonal structures forming in turn as pressure increased, and structural phase transitions at 8.8 and 24 GPa. Ag0.05Bi1.95Se3 showed no superconductivity down to 2.0 K at 0 GPa, but under pressure, superconductivity suddenly appeared at 11 GPa. The magnetic field (H) dependence of the superconducting transition temperature Tc was measured at 11 and 20.5 GPa, in order to investigate whether the pressure-induced superconducting phase is explained by either p-wave polar model or s-wave model
Detection of SARS-CoV-2 using qRT-PCR in saliva obtained from asymptomatic or mild COVID-19 patients, comparative analysis with matched nasopharyngeal samples
Objectives: The accurate detection of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) is essential for the diagnosis of coronavirus disease 2019 (COVID-19). We compared the quantitative RT-PCR results between nasopharyngeal swabs and saliva specimens.Methods: A COVID-19 outbreak occurred on a cruise ship at Nagasaki port, Japan. We obtained 123 nasopharyngeal swabs and saliva each from asymptomatic or mild patients in the late phase of infection.Results: The intervals from the diagnosis to the sampling were 25.5 days for nasopharyngeal swabs and 28.9 days for saliva. The positive rate was 19.5% (24/123) for nasopharyngeal swabs and 38.2% (47/123) for saliva (P = 0.48). The quantified viral copies (mean ± SEM copies/5 μl) were 9.3±2.6 in nasopharyngeal swabs and 920±850 in saliva (P = 0.0006).Conclusions: The advantages of saliva specimens include positive rate improvement and accurate viral load detection. Saliva may be used as a reliable sample for SARS-CoV-2 detection
The Quiescent Intracluster Medium in the Core of the Perseus Cluster
Clusters of galaxies are the most massive gravitationally-bound objects in
the Universe and are still forming. They are thus important probes of
cosmological parameters and a host of astrophysical processes. Knowledge of the
dynamics of the pervasive hot gas, which dominates in mass over stars in a
cluster, is a crucial missing ingredient. It can enable new insights into
mechanical energy injection by the central supermassive black hole and the use
of hydrostatic equilibrium for the determination of cluster masses. X-rays from
the core of the Perseus cluster are emitted by the 50 million K diffuse hot
plasma filling its gravitational potential well. The Active Galactic Nucleus of
the central galaxy NGC1275 is pumping jetted energy into the surrounding
intracluster medium, creating buoyant bubbles filled with relativistic plasma.
These likely induce motions in the intracluster medium and heat the inner gas
preventing runaway radiative cooling; a process known as Active Galactic
Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus
cluster core, which reveal a remarkably quiescent atmosphere where the gas has
a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from
the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s
is found across the 60 kpc image of the cluster core. Turbulent pressure
support in the gas is 4% or less of the thermodynamic pressure, with large
scale shear at most doubling that estimate. We infer that total cluster masses
determined from hydrostatic equilibrium in the central regions need little
correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology
Hitomi (ASTRO-H) X-ray Astronomy Satellite
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month
Integrative annotation of 21,037 human genes validated by full-length cDNA clones.
publication en ligne. Article dans revue scientifique avec comité de lecture. nationale.National audienceThe human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology
- …