180 research outputs found
Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview
Disturbance Observer has been one of the most widely used robust control
tools since it was proposed in 1983. This paper introduces the origins of
Disturbance Observer and presents a survey of the major results on Disturbance
Observer-based robust control in the last thirty-five years. Furthermore, it
explains the analysis and synthesis techniques of Disturbance Observer-based
robust control for linear and nonlinear systems by using a unified framework.
In the last section, this paper presents concluding remarks on Disturbance
Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure
Central controller for hybrid control over network
In this paper, a central controller for position/force
hybrid control over network is proposed. In the proposed method,
the central controller receives position and force information
from each plant. Then, the central controller generates acceleration
references for each plant by using a hybrid controller and a
dead time compensator. As an application, bilateral control with
communication delay is implemented. And some simulations and
experiments verify the validity of the proposed method
A Stability Analysis for the Acceleration-based Robust Position Control of Robot Manipulators via Disturbance Observer
This paper proposes a new nonlinear stability analysis for the
acceleration-based robust position control of robot manipulators by using
Disturbance Observer (DOb). It is shown that if the nominal inertia matrix is
properly tuned in the design of DOb, then the position error asymptotically
goes to zero in regulation control and is uniformly ultimately bounded in
trajectory tracking control. As the bandwidth of DOb and the nominal inertia
matrix are increased, the bound of error shrinks, i.e., the robust stability
and performance of the position control system are improved. However, neither
the bandwidth of DOb nor the nominal inertia matrix can be freely increased due
to practical design constraints, e.g., the robust position controller becomes
more noise sensitive when they are increased. The proposed stability analysis
provides insights regarding the dynamic behavior of DOb-based robust motion
control systems. It is theoretically and experimentally proved that
non-diagonal elements of the nominal inertia matrix are useful to improve the
stability and adjust the trade-off between the robustness and noise
sensitivity. The validity of the proposal is verified by simulation and
experimental results.Comment: 9 pages, 9 figures, Journa
Control of interconnected mechanical systems
In this paper control systems design approach, based on siding mode methods, that allows maintain some functional relation – like bilateral or multilateral systems, establishment of virtual relation among mobile robots or control of haptic systems - is presented. It is shown that all basic motion control problems - trajectory tracking, force control, hybrid position/force control scheme and the impedance control for the interacting systems- can be treated in the same way while avoiding the structural change of the controller and guarantying stable behavior of the system In order to show applicability of the proposed techniques simulation and experimental results for high precision systems in microsystems assembly tasks are presented.
Sliding modes in constrained systems control
Abstract—In this paper, a sliding-mode-based design framework
for fully actuated mechanical multibody system is discussed.
The framework is based on the possibility to represent complex
motion as a collection of tasks and to find effective mapping of
the system coordinates that allows decoupling task and constraint
control so one is able to enforce concurrently, or in certain time
succession, the task and the constraints. The approach seems naturally
encompassing the control of motion systems in interaction,
and it allows application to bilateral control, multilateral control,
etc. Such an approach leads to a more natural interpretation of
the system tasks, simpler controller design, and easier establishment
of the systems hierarchy. It allows a unified mathematical
treatment of task control in the presence of constraints required
to be satisfied by the system coordinates. In order to show the
applicability of the proposed techniques, simulation and experimental
results for high-precision systems in microsystem assembly
tasks and bilateral control systems are presented
Bilateralno upravljanje gibanjem za apstrakciju i reprodukciju stvarne sile
In recent years, skill preservation of an expert and skill education for young technical workers have been serious issues in medical and production fields. The best way which young technical workers learn the ripe skill is that an expert teaches them. However, unfortunately, experts have lessened in these years. So, if digital skill preservation like a haptic database is attained, it may become an innovative solution of the above problem. Thus, as the fundamental technology for development of the haptic database, this paper proposes abstraction and reproduction methods on bilateral control of real world force sensation, and reconstruction of real world environment as well. In the abstraction mode, a master-slave system is composed, and the action-reaction law is attained through bilateral control. Later, based on acceleration information, the force, position and velocity of both master and slave systems are estimated and obtained. In the reconstruction mode, an environmental model is reconstructed based on the obtained data from real-world. Next, by using reproduction mode on master side, the operator would feel the force sensation from the obtained environmental model. Here, the proposed system is able to store the bilateral real-world force sensation to a sensation database. Finally, the experimental results show the validity of the proposed method.Održavanje sposobnosti iskusnih operatera i uvježbavanje novih operatera postaje sve važnijim zadatkom u medicinskim i proizvodnim primjenama. Nove operatere najbolje uvježbavaju iskusni operateri, ali njih sve više nedostaje. Inovativno rješenje toga problema može biti pohranjivanje vještina iskusnih operatera u tzv. haptičku bazu podataka. U ovome se članku za razvoj haptičke baze podataka predlažu metode apstrakcije i reprodukcije stvarne sile u bilateralnom upravljanju te metoda rekonstrukcije udaljenoga stvarnoga prostora u kojemu djeluje prateći sustav. U apstrakcijskom načinu rada uspostavlja se bilateralno upravljanje između vodećeg i pratećeg sustava uz održavanje zakona akcije i reakcije između njih. Nakon toga estimiraju se sila, brzina i pozicija vodećeg i pratećeg sustava na temelju informacije o ubrzanju. U rekonstrukcijskom načinu rada rekonstruira se model udaljenoga stvarnoga prostora na osnovi podataka iz stvarnoga udaljenoga prostora. Na koncu, primjenom reprodukcijskog načina rada na strani vodećeg sustava operater bi trebao osjećati silu iz modela udaljenog prostora izgrađenog u rekonstrukcijskom načinu rada. Predloženi sustav omogućuje spremanje bilateralno prenošene sile u bazu podataka, što je potkrijepljeno eksperimentalnim rezultatima
- …