16 research outputs found

    BioID using Tamavidin 2-REV

    Get PDF
    Stimulator of interferon genes (STING) mediates cytosolic DNA-induced innate immune signaling via membrane trafficking. The global identification of proteins that spatiotemporally interact with STING will provide a better understanding of its trafficking mechanisms and of STING signaling pathways. Proximity-dependent biotin identification (BioID) is a powerful technology to identify physiologically relevant protein-protein interactions in living cells. However, biotinylated peptides are rarely detected in the conventional BioID method, which uses streptavidin beads to pull down biotinylated proteins, because the biotin-streptavidin interaction is too strong. As a result, only nonbiotinylated peptides are identified, which cannot be distinguished from peptides of nonspecifically pull-downed proteins. Here, we developed a simple method to efficiently and specifically enrich biotinylated peptides using Tamavidin 2-REV, an engineered avidin-like protein with reversible biotin-binding capability. Using RAW264.7 macrophages stably expressing TurboID-fused STING, we identified and quantified >4,000 biotinylated peptides of STING-proximal proteins. Various endoplasmic reticulum-associated proteins were biotinylated in unstimulated cells, and STING activation caused biotinylation of many proteins located in the Golgi and endosomes. These proteins included those known to interact with activated STING, such as TANK-binding kinase 1 (TBK1), several palmitoyl transferases, and p62/sequestosome 1 (SQSTM1). Furthermore, interferon-induced transmembrane protein 3 (IFITM3), an endolysosome-localized antiviral protein, bound to STING at the late activation stage. These dynamic interaction profiles will provide detailed insights into STING signaling; we propose that our approach using Tamavidin 2-REV would be useful for BioID-based and other biotinylation-based peptide identification methods

    Role of Irgm2 in anti-Toxoplasma immunity

    Get PDF
    Interferon-inducible GTPases, such as immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs), are essential for cell-autonomous immunity against a wide variety of intracellular pathogens including Toxoplasma. IRGs comprise regulatory and effector subfamily proteins. Regulatory IRGs Irgm1 and Irgm3 play important roles in anti-Toxoplasma immunity by globally controlling effector IRGs and GBPs. There is a remaining regulatory IRG, called Irgm2, which highly accumulates on parasitophorous vacuole membranes (PVMs). Very little is known about the mechanism of the unique localization on Toxoplasma PVMs. Here, we show that Irgm2 is important to control parasite killing through recruitment of Gbp1 and Irgb6, which does not require Irgm2 localization at Toxoplasma PVMs. Ubiquitination of Irgm2 in the cytosol, but not at the PVM, is also important for parasite killing through recruitment of Gbp1 to the PVM. Conversely, PVM ubiquitination and p62/Sqstm1 loading at later time points post-Toxoplasma infection require Irgm2 localization at the PVM. Irgm2-deficient mice are highly susceptible to Toxoplasma infection. Taken together, these data indicate that Irgm2 selectively controls accumulation of anti-Toxoplasma effectors to the vacuole in a manner dependent or independent on Irgm2 localization at the Toxoplasma PVM, which mediates parasite killing

    AirID, a novel proximity biotinylation enzyme, for analysis of protein–protein interactions

    Get PDF
    Proximity biotinylation based on Escherichia coli BirA enzymes such as BioID (BirA*) and TurboID is a key technology for identifying proteins that interact with a target protein in a cell or organism. However, there have been some improvements in the enzymes that are used for that purpose. Here, we demonstrate a novel BirA enzyme, AirID (ancestral BirA for proximity-dependent biotin identification), which was designed de novo using an ancestral enzyme reconstruction algorithm and metagenome data. AirID-fusion proteins such as AirID-p53 or AirID-IκBα indicated biotinylation of MDM2 or RelA, respectively, in vitro and in cells, respectively. AirID-CRBN showed the pomalidomide-dependent biotinylation of IKZF1 and SALL4 in vitro. AirID-CRBN biotinylated the endogenous CUL4 and RBX1 in the CRL4CRBN complex based on the streptavidin pull-down assay. LC-MS/MS analysis of cells that were stably expressing AirID-IκBα showed top-level biotinylation of RelA proteins. These results indicate that AirID is a novel enzyme for analyzing protein–protein interactions

    Caspase-1 protein induces apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-mediated necrosis independently of its catalytic activity

    Get PDF
    The adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), connects pathogen/danger sensors such as NLRP3 and NLRC4 with caspases and is involved in inflammation and cell death. We have found that ASC activation induced caspase-8-dependent apoptosis or CA-074Me (cathepsin B inhibitor)-inhibitable necrosis depending on the cell type. Unlike necroptosis, another necrotic cell death, ASC-mediated necrosis, was neither RIP3-dependent nor necrostatin-1-inhibitable. Although acetyl-YVAD- chloromethylketone (Ac-YVAD-CMK) (caspase-1 inhibitor) did not inhibit ASC-mediated necrosis, comprehensive gene expression analyses indicated that caspase-1 expression coincided with the necrosis type. Furthermore, caspase-1 knockdown converted necrosis-type cells to apoptosis-type cells, whereas exogenous expression of either wild-type or catalytically inactive caspase-1 did the opposite. Knockdown of caspase-1, but not Ac-YVAD-CMK, suppressed the monocyte necrosis induced by Staphylococcus and Pseudomonas infection. Thus, the catalytic activity of caspase-1 is dispensable for necrosis induction. Intriguingly, a short period of caspase-1 knockdown inhibited IL-1β production but not necrosis, although longer knockdown suppressed both responses. Possible explanations of this phenomenon are discussed. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc

    Activation of ASC induces apoptosis or necrosis, depending on the cell type, and causes tumor eradication

    Get PDF
    The adaptor protein ASC (also called TMS1) links certain NLR proteins (e.g., NLRC4, NLRP3) and caspases. It is involved in the chemosensitivity of tumor cells and inflammation. Here, we found that ASC activation using NLRC4 mimicry or an autoinflammatory disease-associated NLRP3 mutant induced necrosis in COLO205 colon adenocarcinoma cells, but induced caspase-8-dependent apoptosis in NUGC-4 stomach cancer cells. As the Fas ligand induced caspase-8-dependent apoptosis in COLO205 cells, caspase-8 was intact in this cell line. ASC-mediated necrosis was preceded by lysosomal leakage, and diminished by inhibitors for vacuolar H+-ATPase, cathepsins, and calpains but not by inhibitors for caspase-8, or aspartic proteases, suggesting that lysosomes and certain proteases were involved in this process. Finally, growing tumors of transplanted human cancer cells in nude mice were eradicated by the activation of endogenous ASC in the tumor cells, irrespective of the form of cell death. Thus, ASC mediates distinct forms of cell death in different cell types, and is a promising target for cancer therapy. (Cancer Sci 2010). © 2010 Japanese Cancer Association

    Mechanism and repertoire of ASC-mediated gene expression

    Get PDF
    金沢大学がん研究所Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is an adaptor molecule that mediates inflammatory and apoptotic signals. Although the role of ASC in caspase-1-mediated IL-1beta and IL-18 maturation is well known, ASC also induces NF-kappaB activation and cytokine gene expression in human cells. In this study, we investigated the molecular mechanism and repertoire of ASC-induced gene expression in human cells. We found that the specific activation of ASC induced AP-1 activity, which was required for optimal IL8 promoter activity. ASC activation also induced STAT3-, but not STAT1-, IFN-stimulated gene factor 3- or NF-AT-dependent reporter gene expression. The ASC-mediated AP-1 activation was NF-kappaB-independent and primarily cell-autonomous response, whereas the STAT3 activation required NF-kappaB activation and was mediated by a factor that can act in a paracrine manner. ASC-mediated AP-1 activation was inhibited by chemical or protein inhibitors for caspase-8, caspase-8-targeting small-interfering RNA, and p38 and JNK inhibitors, but not by a caspase-1 inhibitor, caspase-9 or Fas-associated death domain protein (FADD) dominant-negative mutants, FADD- or RICK-targeting small-interfering RNAs, or a MEK inhibitor, indicating that the ASC-induced AP-1 activation is mediated by caspase-8, p38, and JNK, but does not require caspase-1, caspase-9, FADD, RICK, or ERK. DNA microarray analyses identified 75 genes that were induced by ASC activation. A large proportion of them was related to transcription (23%), inflammation (21%), or cell death (16%), indicating that ASC is a potent inducer of inflammatory and cell death-related genes. This is the first report of ASC-mediated AP-1 activation and the repertoire of genes induced downstream of ASC activation

    The Golgi-resident protein ACBD3 concentrates STING at ER-Golgi contact sites to drive export from the ER

    Get PDF
    STING, an endoplasmic reticulum (ER)-resident receptor for cyclic di-nucleotides (CDNs), is essential for innate immune responses. Upon CDN binding, STING moves from the ER to the Golgi, where it activates downstream type-I interferon (IFN) signaling. General cargo proteins exit from the ER via concentration at ER exit sites. However, the mechanism of STING concentration is poorly understood. Here, we visualize the ER exit sites of STING by blocking its transport at low temperature or by live-cell imaging with the cell-permeable ligand bis-pivSATE-2'F-c-di-dAMP, which we have developed. After ligand binding, STING forms punctate foci at non-canonical ER exit sites. Unbiased proteomic screens and super-resolution microscopy show that the Golgi-resident protein ACBD3/GCP60 recognizes and concentrates ligand-bound STING at specialized ER-Golgi contact sites. Depletion of ACBD3 impairs STING ER-to-Golgi trafficking and type-I IFN responses. Our results identify the ACBD3-mediated non-canonical cargo concentration system that drives the ER exit of STING

    The Golgi-resident protein ACBD3 concentrates STING at ER-Golgi contact sites to drive export from the ER

    No full text
    STING, an endoplasmic reticulum (ER)-resident receptor for cyclic di-nucleotides (CDNs), is essential for innate immune responses. Upon CDN binding, STING moves from the ER to the Golgi, where it activates downstream type-I interferon (IFN) signaling. General cargo proteins exit from the ER via concentration at ER exit sites. However, the mechanism of STING concentration is poorly understood. Here, we visualize the ER exit sites of STING by blocking its transport at low temperature or by live-cell imaging with the cell-permeable ligand bis-pivSATE-2'F-c-di-dAMP, which we have developed. After ligand binding, STING forms punctate foci at non-canonical ER exit sites. Unbiased proteomic screens and super-resolution microscopy show that the Golgi-resident protein ACBD3/GCP60 recognizes and concentrates ligand-bound STING at specialized ER-Golgi contact sites. Depletion of ACBD3 impairs STING ER-to-Golgi trafficking and type-I IFN responses. Our results identify the ACBD3-mediated non-canonical cargo concentration system that drives the ER exit of STING
    corecore