49 research outputs found
Molecular states in a one-electron double quantum dot
The transport spectrum of a strongly tunnel-coupled one-electron double
quantum dot electrostatically defined in a GaAs/AlGaAs heterostructure is
studied. At finite source-drain-voltage we demonstrate the unambiguous
identification of the symmetric ground state and the antisymmetric excited
state of the double well potential by means of differential conductance
measurements. A sizable magnetic field, perpendicular to the two-dimensional
electron gas, reduces the extent of the electronic wave-function and thereby
decreases the tunnel coupling. A perpendicular magnetic field also modulates
the orbital excitation energies in each individual dot. By additionally tuning
the asymmetry of the double well potential we can align the chemical potentials
of an excited state of one of the quantum dots and the ground state of the
other quantum dot. This results in a second anticrossing with a much larger
tunnel splitting than the anticrossing involving the two electronic ground
states.Comment: 4 pages, 4 figures; EP2DS-16 conference contributio
Collective Modes of Soliton-Lattice States in Double-Quantum-Well Systems
In strong perpendicular magnetic fields double-quantum-well systems can
sometimes occur in unusual broken symmetry states which have interwell phase
coherence in the absence of interwell hopping. When hopping is present in such
systems and the magnetic field is tilted away from the normal to the quantum
well planes, a related soliton-lattice state can occur which has kinks in the
dependence of the relative phase between electrons in opposite layers on the
coordinate perpendicular to the in-plane component of the magnetic field. In
this article we evaluate the collective modes of this soliton-lattice state in
the generalized random-phase aproximation. We find that, in addition to the
Goldstone modes associated with the broken translational symmetry of the
soliton-lattice state, higher energy collective modes occur which are closely
related to the Goldstone modes present in the spontaneously phase-coherent
state. We study the evolution of these collective modes as a function of the
strength of the in-plane magnetic field and comment on the possibility of using
the in-plane field to generate a finite wave probe of the spontaneously
phase-coherent state.Comment: REVTEX, 37 pages (text) and 15 uuencoded postscript figure
Nonequilibrium phenomena in adjacent electrically isolated nanostructures
We report on nonequilibrium interaction phenomena between adjacent but
electrostatically separated nanostructures in GaAs. A current flowing in one
externally biased nanostructure causes an excitation of electrons in a circuit
of a second nanostructure. As a result we observe a dc current generated in the
unbiased second nanostructure. The results can be qualitatively explained in
terms of acoustic phonon based energy transfer between the two mutually
isolated circuits.Comment: EP2DS-2007 proceedings; as publishe
Intersubband energies in GaAs-Ga1-xAlxAs heterojunctions
Contains fulltext :
145268.pdf (publisher's version ) (Open Access
Top-Gate Einzel-Elektronen-Transistoren in Si/SiGe Heterostrukturen Schlussbericht
Available from TIB Hannover: F99B1198+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung und Forschung (BMBF), Bonn (Germany)DEGerman