8 research outputs found

    GSK3β interacts with CRMP2 and Notch1 and controls T-cell motility

    No full text
    The trafficking of T-cells through peripheral tissues and into afferent lymphatic vessels is essential for immune surveillance and an adaptive immune response. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase and regulates numerous cell/tissue-specific functions, including cell survival, metabolism, and differentiation. Here, we report a crucial involvement of GSK3β in T-cell motility. Inhibition of GSK3β by CHIR-99021 or siRNA-mediated knockdown augmented the migratory behavior of human T-lymphocytes stimulated via an engagement of the T-cell integrin LFA-1 with its ligand ICAM-1. Proteomics and protein network analysis revealed ongoing interactions among GSK3β, the surface receptor Notch1 and the cytoskeletal regulator CRMP2. LFA-1 stimulation in T-cells reduced Notch1-dependent GSK3β activity by inducing phosphorylation at Ser9 and its nuclear translocation accompanied by the cleaved Notch1 intracellular domain and decreased GSK3β-CRMP2 association. LFA-1-induced or pharmacologic inhibition of GSK3β in T-cells diminished CRMP2 phosphorylation at Thr514. Although substantial amounts of CRMP2 were localized to the microtubule-organizing center in resting T-cells, this colocalization of CRMP2 was lost following LFA-1 stimulation. Moreover, the migratory advantage conferred by GSK3β inhibition in T-cells by CHIR-99021 was lost when CRMP2 expression was knocked-down by siRNA-induced gene silencing. We therefore conclude that GSK3β controls T-cell motility through interactions with CRMP2 and Notch1, which has important implications in adaptive immunity, T-cell mediated diseases and LFA-1-targeted therapies.Ministry of Education (MOE)National Research Foundation (NRF)Published versionThis work was supported by the grants from the Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 (2014-T1-001-141 and 2020-T1-001-062) and the National Research Foundation Singapore under its Open Fund Large Collaborative Grant (OFLCG18May-0028) and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC)

    Biomimetic aligned nanofibrous dressings containing cell-selective polymer enhance diabetic wound regeneration

    No full text
    Diabetic ulcers remain a significant challenge in wound care due to loss of epithelial cell migration. Aligned nanofibrous scaffolds mimicking the skin's extracellular matrix (ECM) are promising candidates for diabetic wound healing. In this study, a composition of poly(ε-caprolactone), gelatin, and dopamine-containing varying amounts of ε-polylysine (ε-PL) was electrospun to prepare aligned nanofiber wound dressings (ANFDs). We then investigated the morphological, physicochemical, mechanical, and biological properties of fabricated ANDFs. The presence of ε-PL confers bactericidal properties while promoting epithelial and fibroblast adhesion, proliferation, and migration, confirming its cell selectivity. The clinical importance of the ANFDs was then demonstrated in a mice model of full-thickness diabetic wounds. The results confirm that ANFD treatment resulted in a higher rate of wound closure in the linear range of wound closure than wounds treated with silver dressings. Taken together, these results suggest the potential of antimicrobial ANFDs for the treatment of diabetic wounds

    Electrospun aligned PCLl/gelatin scaffolds mimicking the skin ECM for effective antimicrobial wound dressings

    No full text
    Bacterial infections and multidrug-resistant bacteria are major health burdens in wound care. Biocompatible antimicrobial agents, e.g., ε-polylysine (ε-PL), provide a broad spectrum of antibacterial properties and support dermal cell growth. Here, ε-PL was incorporated into polycaprolactone (PCL)/gelatin electrospun scaffolds collected at varying rotation speeds. Then, the samples were crosslinked using dopamine hydrochloride to provide highly proliferative dressings with broad antimicrobial activity. The morphological study showed that the electrospun wound dressings were smooth, continuous, and bead-free, with a mean diameter ranging from 267 ± 7 to 331 ± 8 nm for all random and aligned nanofibers. The fiber alignment of the electrospun PCL/gelatin scaffolds improved their tensile strength and modulus. Moreover, nanofiber mats are highly hydrophilic, which is crucial for an efficient wound dressing. The samples also demonstrated high antimicrobial properties against common wound bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (SA), Escherichia coli (EC), Acinetobacter baumannii (AB), and Pseudomonas aeruginosa (PA). Mammalian cell proliferation and morphology assays involving primary human dermal fibroblasts (hDFs) and immortalized keratinocytes (HaCaT) showed excellent biocompatibility of the electrospun mats and remarkably aligned mats. Furthermore, aligned mats showed more cell migration than randomly oriented mats, which is desirable for more efficient wound healing. Therefore, it can be concluded that aligned PCL/gelatin mats containing ε-PL are promising for potential use in wound dressings. Graphical Abstract: [Figure not available: see fulltext.].Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Nanyang Technological UniversityE.R.G. acknowledges the financial support from the Singapore International Graduate Award (SINGA). R.L. thanks funding support from the Duke-NUS Khoo Bridge Funding Award (Duke-NUS-KBrFA/2021/0044). N.K.V. acknowledges funding support from the Singapore Ministry of Education (MOE) under its MOE Academic Research Fund (AcRF) Tier 1 Grant (RG26/20) and the Agency for Science, Technology and Research (A*STAR) under its Wound Care Innovation for the Tropics (WCIT) Industry Alignment Fund Pre-Positioning (IAF-PP) Grant (H17/01/a0/0K9). B.H.S.W. and Z.S.P. were provided Ph.D. fellowships by HealthTech NTU and Lee Kong Chian School of Medicine, Nanyang Technological University Singapore

    Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy

    No full text
    High doses of dexamethasone (Dex) or myostatin (Mstn) induce severe atrophy of skeletal muscle. Here we show a novel microRNA1 (miR1)-mediated mechanism through which Dex promotes skeletal muscle atrophy. Using both C2C12 myotubes and mouse models of Dex-induced atrophy we show that Dex induces miR1 expression through glucocorticoid receptor (GR). We further show that Mstn treatment facilitates GR nuclear translocation and thereby induces miR1 expression. Inhibition of miR1 in C2C12 myotubes attenuated the Dex-induced increase in atrophy-related proteins confirming a role for miR1 in atrophy. Analysis of miR1 targets revealed that HSP70 is regulated by miR1 during atrophy. Our results demonstrate that increased miR1 during atrophy reduced HSP70 levels, which resulted in decreased phosphorylation of AKT, as HSP70 binds to and protects phosphorylation of AKT. We further show that loss of pAKT leads to decreased phosphorylation, and thus, enhanced activation of FOXO3, up-regulation of MuRF1 and Atrogin-1, and progression of skeletal muscle atrophy. Based on these results, we propose a model whereby Dex- and Mstn-mediated atrophic signals are integrated through miR1, which then either directly or indirectly, inhibits the proteins involved in providing protection against atrophy

    Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy

    No full text
    High doses of dexamethasone (Dex) or myostatin (Mstn) induce severe atrophy of skeletal muscle. Here we show a novel microRNA1 (miR1)-mediated mechanism through which Dex promotes skeletal muscle atrophy. Using both C2C12 myotubes and mouse models of Dex-induced atrophy we show that Dex induces miR1 expression through glucocorticoid receptor (GR). We further show that Mstn treatment facilitates GR nuclear translocation and thereby induces miR1 expression. Inhibition of miR1 in C2C12 myotubes attenuated the Dex-induced increase in atrophy-related proteins confirming a role for miR1 in atrophy. Analysis of miR1 targets revealed that HSP70 is regulated by miR1 during atrophy. Our results demonstrate that increased miR1 during atrophy reduced HSP70 levels, which resulted in decreased phosphorylation of AKT, as HSP70 binds to and protects phosphorylation of AKT. We further show that loss of pAKT leads to decreased phosphorylation, and thus, enhanced activation of FOXO3, up-regulation of MuRF1 and Atrogin-1, and progression of skeletal muscle atrophy. Based on these results, we propose a model whereby Dex- and Mstn-mediated atrophic signals are integrated through miR1, which then either directly or indirectly, inhibits the proteins involved in providing protection against atrophy

    LFA-1/ICAM-1 ligation in human T cells promotes Th1 polarization through a GSK3β signaling–dependent notch pathway

    No full text
    In this study, we report that the integrin LFA-1 cross-linking with its ligand ICAM-1 in human PBMCs or CD4+ T cells promotes Th1 polarization by upregulating IFN-γ secretion and T-bet expression. LFA-1 stimulation in PBMCs, CD4+ T cells, or the T cell line HuT78 activates the Notch pathway by nuclear translocation of cleaved Notch1 intracellular domain (NICD) and upregulation of target molecules Hey1 and Hes1. Blocking LFA-1 by a neutralizing Ab or specific inhibition of Notch1 by a γ-secretase inhibitor substantially inhibits LFA-1/ICAM-1–mediated activation of Notch signaling. We further demonstrate that the Notch pathway activation is dependent on LFA-1/ICAM-1–induced inactivation of glycogen synthase kinase 3β (GSK3β), which is mediated via Akt and ERK. Furthermore, in silico analysis in combination with coimmunoprecipitation assays show an interaction between NICD and GSK3β. Thus, there exists a molecular cross-talk between LFA-1 and Notch1 through the Akt/ERK–GSK3β signaling axis that ultimately enhances T cell differentiation toward Th1. Although clinical use of LFA-1 antagonists is limited by toxicity related to immunosuppression, these findings support the concept that Notch inhibitors could be attractive for prevention or treatment of Th1-related immunologic disorders and have implications at the level of local inflammatory responses.MOE (Min. of Education, S’pore
    corecore