53 research outputs found
STRUCTURE AND MAGNETIC PROPERTIES OF Mn–Zn-FERRITES
Synthesis conditions, structure and magnetic properties of Mn-Zn-ferrites prepared by spray
pyrolysis of solutions of manganese, zinc and iron nitrates have been considered. The applied
technique provides low-temperature (650 °C) obtaining highly dispersed (7-8 nm) powder of
Mn0.5Zn0.5Fe2O4 ferrite with a narrow size distribution. Synthesis of Mn0.5Zn0.5Fe2O4 at low
temperature avoids MnII → MnIII oxidation reaction that influences the ferrite properties. IR data
collected from the ferrite samples obtained both in air and in N2 ambient indicate their high structural
and concentration homogeneity. Magnetic measurements confirm single-phase structure of the
Mn0.5Zn0.5Fe2O4 powders and give no evidence of the presence of individual iron oxide phases. Curie
temperature (375-380 K) is consistent with the theoretically calculated value for Mn1-xZnxFe2O4 (x =
0.5) (Tc = 365÷385 K). Parameters of Moessbauer spectra of the ferrites are typical of FeIII state in
oxide solid solutions with a considerable ionicity contribution in Fe-O bonds (δ = 0.33÷0.34 mm/s).
FeII state was not revealed by Moessbauer spectroscopy that indicates the absence of FeIII → FeII
reduction accompanying the MnII → MnIII oxidation process
Structural distinctions of Fe2O3-In2O3 composites obtained by various sol-gel procedures, and their gas-sensing features
New and various approaches to the sol–gel synthesis of advanced gas-sensing materials based on nanosized Fe2O3–In2O3 (9:1 mol) mixed
oxides, which differ in phase composition and grain size, have been considered in this paper. The correlation between the structural features of
the composites and their gas-sensing behavior has been established. It was found that multi-phase Fe2O3–In2O3 composites containing metastable
-Fe2O3 structure are characterized by the greatest sensitivity to both reducing (C2H5OH) and oxidizing (NO2) gases tested in this paper. The
influence of synthesis conditions on the structural peculiarities of the Fe2O3–In2O3 composites was studied in detail and the possibility to adjust
fine structure of the materials was demonstrated
Gas-sensitive properties of oxide systems based on ln203 and Sn02 obtained by sol-gel technology
The influence of structural features of ln203, Sn02, Mo03 and Fe203 simple oxides and their composites on the properties of the corresponding semiconductor gas sensors with regards to different gases (CO, CH4, NH3, C2H5OH, CH3OH, NO, N02, 03) have been studied. Structural peculiarities of oxide systems obtained by sol-gel technology have been considered. It was shown the possibility to control the sensor sensitivity to the mentioned above gases by varying chemical composition of sensitive materials and adjusting their structure, as well as by regulat-ing of detecting temperatur
Gas-sensitive properties of thin film heterojunction structures based on Fe2O3-In2O3 nanocomposites
This paper reports an investigation of the gas-sensitive properties of thin film based on the double-layers Fe2O3/In2O3 and Fe2O3-In2O3/In2O3 towards gases with different chemical nature (C2H5OH, CH4, CO, NH3, NO2, O3). As it was found, the -Fe2O3-In2O3 composite (Fe:In = 9:1) is more sensitive to O3; on the contrary, the -Fe2O3-In2O3 system (9:1), possesses an higher sensitivity to NO2. The optimal temperature for detecting both gases is in the range 70 - 100C. Sensors based on the -Fe2O3/In2O3 heterostructure show the maximum response to C2H5OH at considerably higher temperatures (250-300C), but this layer is practically insensitive to other reducing gases like CH4, CO and NH3 in the same temperature range.
An explanation of the different gas-sensitive behavior for the these samples resulted from the particular features of their structure and phase stat
Silver(I) complexes with phenolic Schiff bases: Synthesis, anti-bacterial evaluation and interaction with biomolecules
Novel Ag(I) complexes (2a–2c) with phenolic Schiff bases were synthesized using 4,6-di-tert-butyl-3-(((5-mercapto-1,3,4-thiadiazol-2-yl)imino)methyl)benzene-1,2-diol (1a), 4,6-di-tert-butyl-3-(((4-mercaptophenyl)imino)methyl)benzene-1,2-diol (1b), and 4,6-di-tert-butyl-3-(((3-mercaptophenyl)imino)methyl)benzene-1,2-diol (1c). They were examined by elemental analysis, FT-IR, UV-Vis, 1H-NMR spectroscopy, XRD, cyclic voltammetry, conductivity measurements, and biological methods. The complexes are characterized by distorted geometry of the coordination cores AgN2S2 (2c), AgNS (2b) and AgS2 (2a). These stable complexes were not typified by the intramolecular redox reaction in organic solvents resulting in the formation of silver nanoparticles (AgNPs). Antibacterial activity of 1a–1c and 2a–2c was evaluated in comparison with AgNPs and commonly used antibiotics. All the complexes were more active than the ligands against the bacteria tested (14), but they were less active than AgNPs and commonly used antibiotics. Both 1a–1c and their complexes 2a–2c exhibited the capability for the bovine heart Fe(III)-Cyt c reduction. The ligands 1b and 1c were characterized by the highest reduction rate among the compounds under study, and they showed a higher reducing ability (determined by cyclic voltammetry) as compared with that of their Ag(I) complexes 2b and 2c
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА МАГНИТНЫХ НАНОЧАСТИЦ Mg1–хZnхFe2O4, ПОЛУЧЕННЫХ РАЗЛИЧНЫМИ МЕТОДАМИ
Superparamagnetic ferrite nanoparticles in the system of MgxZn1–xFe2O4 (х = 0.25; 0.5; 0.7) have been prepared by coprecipitation, spray pyrolysis and the nitrate-citrate approach. The dependence of the phase composition, morphology and magneticproperties of the nanoparticles on their chemical composition and synthesis conditions have been studied. The crystallinity degree and particle size tend to increase with the increase of the synthesis temperature and duration. The saturation magnetization of the nanoparticles increase as well due to cation redistribution between spinel structure sublattices, which is accompanied by reduction of the inversion degree. In the case of spray pyrolysis method, the correlation between saturation magnetization and ferrite composition is weak, while for coprecipitation and the nitrate-citrate approach it goes through a maximum. The highest saturation magnetization of 30 а∙m2∙kg–1 relates to kg0,5Zn0,5Fe2O4 sample obtained by the nitrate-citrate approach.Суперпарамагнитные наночастицы ферритов в системе MgxZn1–xFe2O4 (х = 0,25; 0,5; 0,7) были синтезированы путем соосаждения, распылительного пиролиза и нитрат-цитратного метода. Были исследованы зависимости фазового состава, морфологии и магнитных свойств наночастиц от их химического состава и условий проведения синте-за. С ростом температуры и продолжительности синтеза наблюдается повышение степени закристаллизованности и размеров частиц. При этом также повышаются значения намагниченности насыщения наночастиц за счет перераспределения катионов между подрешетками шпинельной структуры, сопровождающегося уменьшением степени об-ращенности. Для метода распылительного пиролиза зависимость удельной намагниченности от состава феррита выражена слабо, в то время в случае нитрат-цитратного метода и метода соосаждения эта зависимость проходит через максимум. Наибольшее значение удельной намагниченности (30 А·м2·кг-1) соответствует образцу Mg0,5Zn0,5Fe2O4, полученному нитрат-цитратным методом
Синтез наноразмерных кобальт-цинковых ферритов методом низкотемпературного распыления с последующим термолизом
Co0,65Zn0,35Fe2O4 nanoparticles were produced by spray-drying in air in presence of NaCl from the solution of nitrates, as well as from the suspension of coprecipitated particles. The precursors obtained were annealed at 300–900 °C in the matrix of the inert component in order to increase the crystallinity degree without substantial increase of the nanoparticle size. Microstructure, morphology and magnetic properties of nanoparticles were studied by XRD, FT-IR spectroscopy, TEM / SEM and magnetometry. For the ferrites obtained from nitrate solutions partial oxidation of Co2+ ions to Co3+ occurs, which leads to the formation of two spinel phases, ferrite and cobaltite. With the increase of annealing temperature the content of cobaltite decreases and content of ferrite increases. No cobaltite formation was observed for annealing the spray-dried suspension. An increase in the temperature of the heat treatment leads to partial recrystallization of the particles and the ordering of the ferrite crystal structure, which causes an increase in the specific magnetization of the materials: from 32.8 emu/g (before annealing) to 91.3 emu/g (annealing at 900 ° C). The average diameter of nanoparticles after heat treatment does not exceed 100 nm.Наночастицы состава Co0,65Zn0,35Fe2O4 получали методом распылительной сушки на воздухе в присутствии NaCl из раствора нитратов, а также из суспензии предварительно осажденных частиц. Полученные прекурсоры подвергали термообработке в диапазоне 300–900 °С в матрице инертного компонента с целью увеличения степени кристалличности без существенного роста размеров наночастиц. Микроструктуру, морфологию и магнитные свойства наночастиц исследовали методами РФА, ИК-спектроскопии, ПЭМ/СЭМ и магнитометрии. При получении ферритов из растворов солей происходит частичное окисление ионов Co2+ до Co3+, что приводит к образованию двух шпинельных фаз – феррита и кобальтита. С ростом температуры обжига доля кобальтита снижается, а феррита – растет. При распылении и последующем обжиге суспензий наночастиц формирования фазы кобальтита не происходит. Повышение температуры термообработки приводит к частичной рекристаллизации частиц и упорядочиванию кристаллической структуры феррита, что вызывает рост удельной намагниченности материалов: от 32,79 Ам2 кг–1 (до обжига) до 91,3 Ам2 кг–1 (обжиг при 900 °С). При этом средний диаметр наночастиц после термообработки не превышает 100 нм
- …