226 research outputs found

    Recent developments in magneto-optic garnet-type thin-film materials synthesis

    Get PDF
    Magneto-optic (MO) garnets are used in a range of applications in nanophotonics, integrated optics, communications and imaging. Bi-substituted iron garnets of different compositions are the most useful class of materials in applied magnetooptics due to their excellent MO properties (large Faraday effect) and record-high MO figure of merit among all semitransparent dielectrics. It is highly desirable to synthesise garnets which possess simultaneously a high MO figure of merit and large uniaxial magnetic anisotropy. However, the simultaneous optimization of several material properties and parameters can be difficult in single-layer garnet thin films, and it is also challenging to prepare films with high bismuth content using physical vapor deposition technologies. To meet the current challenge of developing next-generation functional MO materials, we design, develop and demonstrate the functionality of new magnetostatically-altered all-garnet multilayer heterostructures using two different garnet materials of dissimilar anisotropy types (out-of-plane and almost-inplane). The multilayer structures possess simultaneously a high MO figure of merit and large uniaxial magnetic anisotropy together with low coercivity, if each of the layers is optimized in composition and annealed correctly. We prepare thin-film heterostructures by sandwiching a MO garnet layer with almost in-plane magnetization in-between two MO garnet layers with out-of-plane magnetization using RF sputtering. We apply customised high-temperature oven annealing processes (optimized in temperature and process durations after running many trials) for the as-deposited (amorphous) garnet multilayers to obtain the crystalline garnet phase in every layer. These structures then possess simultaneously a high optical/MO quality and low coercivity, which is very attractive for the development of magnetic photonic crystals, sensing devices and ultra-fast switches. Based on Bi-substituted ferrite garnets grown on garnet substrates, this new and unique method for the development of new magnetic materials, enables customized magnetic properties to be attained, and can be used to develop novel types of synthetic garnet materials

    High-Performance Thin-Film Garnet Materials for Magneto-Optic and Nanophotonic Applications

    Get PDF
    Since the 1960\u27s, Magneto-optic (MO) garnet materials have been studied extensively. These materials can possess world-record MO performance characteristics in terms of Faraday rotation and optical quality. Among the rear-earth-doped garnets, the Bi-substituted iron garnet is the best candidate for use as a functional material in different integrated-optics, imaging/image processing applications and also in forward-looking applications e.g. the design of metamaterials with non-reciprocal properties. We have established a set of technologies for fabricating ferrimagnetic garnet films of type (BiDy)3(FeGa)5O12 and also garnet-oxide nanocomposite (BiDy)3(FeGa)5O12 : Bi2O3 layers possessing record-high MO quality across the visible spectral range using RF-magnetron sputtering and oven annealing. Our MO garnet films possess excellent optical and magnetic properties, which make them very attractive and promising for a large range of optoelectronic, photonics-related and MO imaging applications

    The properties of nanocomposite (BiDy)3(FeGa)5O12:Bi2O3 magneto-optic garnet films for applications in nanophotonics, ultrafast switching and integrated optoelectronics

    Get PDF
    We investigate the properties and applications of newly-developed RF-sputtered nano-composites with record-high magneto-optic quality (exceeding 25° at 532 nm and 42° at 635 nm). Bi-substituted dysprosium-gallium iron garnet layers with excess co-sputtered bismuth oxide content are demonstrated to possess very attractive optical and magnetic properties, which makes them suitable for novel magneto-optic and nanophotonic applications

    Highly bismuth-substituted, record-performance magneto-optic garnet materials with low coercivity for applications in integrated optics, photonic crystals, imaging and sensing

    Get PDF
    We report on the fabrication of radio frequency (RF) sputtered Bi-substituted lutetium iron garnet films doped with aluminum and the results of adjusting the properties of these films by means of co-sputtering deposition using an additional bismuth oxide target. Very attractive optical, magnetic and magneto-optical properties are achieved in these new magneto-optic materials. The high-performance magnetically-soft thin-film engineered materials synthesized have a wide range of potential applications in next-generation integrated optics, magneto-photonics and magnetic field sensors

    Properties of exchange coupled all-garnet magneto-optic thin film multilayer structures

    Get PDF
    The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi12O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed

    YIG: Bi 2

    Get PDF
    Y3Fe5O12-Bi2O3 composite thin films are deposited onto Gd3Ga5O12 (GGG) substrates and their annealing crystallization regimes are optimized (in terms of both process temperatures and durations) to obtain high-quality thin film layers possessing magnetic properties attractive for a range of technological applications. The amount of bismuth oxide content introduced into these nanocomposite-type films is controlled by adjusting the RF power densities applied to both Y3Fe5O12 and Bi2O3 sputtering targets during the cosputtering deposition processes. The measured material properties of oven-annealed YIG-Bi2O3 films indicate that cosputtering of YIG-Bi2O3 composites can provide the flexibility of application-specific YIG layers fabrication of interest for several existing, emerging, and also frontier technologies. Experimental results demonstrate large specific Faraday rotation (of more than 1°/µm at 532 nm), achieved simultaneously with low optical losses in the visible range and very narrow peak-to-peak ferromagnetic resonance linewidth of around ΔHpp= 6.1 Oe at 9.77 GHz
    • …
    corecore