5,991 research outputs found
New quantum phase transitions in the two-dimensional J1-J2 model
We analyze the phase diagram of the frustrated Heisenberg antiferromagnet,
the J1-J2 model, in two dimensions. Two quantum phase transitions in the model
are already known: the second order transition from the Neel state to the spin
liquid state at (J_2/J_1)_{c2}=0.38, and the first order transition from the
spin liquid state to the collinear state at (J_2/J_1)_{c4}=0.60. We have found
evidence for two new second order phase transitions: the transition from the
spin columnar dimerized state to the state with plaquette type modulation at
(J_2/J_1)_{c3}=0.50(2), and the transition from the simple Neel state to the
Neel state with spin columnar dimerization at (J_2/J_1)_{c1}=0.34(4). We also
present an independent calculation of (J_2/J_1)_{c2}=0.38 using a new approach.Comment: 3 pages, 5 figures; added referenc
Bound states of magnons in the S=1/2 quantum spin ladder
We study the excitation spectrum of the two-leg antiferromagnetic S=1/2
Heisenberg ladder. Our approach is based on the description of the excitations
as triplets above a strong-coupling singlet ground state. The quasiparticle
spectrum is calculated by treating the excitations as a dilute Bose gas with
infinite on-site repulsion. We find singlet (S=0) and triplet (S=1)
two-particle bound states of the elementary triplets. We argue that bound
states generally exist in any dimerized quantum spin model.Comment: 4 REVTeX pages, 4 Postscript figure
Observation of deconfinement in a cold dense quark medium
In this paper we study the confinement/deconfinement transition in lattice
QCD at finite quark density and zero temperature. The simulations are
performed on an lattice with rooted staggered fermions at a lattice
spacing . This small lattice spacing allowed us to
reach very large baryon density (up to quark chemical potential ) avoiding strong lattice artifacts. In the region we observe for the first time the confinement/deconfinement
transition which manifests itself in rising of the Polyakov loop and vanishing
of the string tension . After the deconfinement is achieved at , we observe a monotonous decrease of the spatial string
tension which ends up with vanishing at . From this observation we draw the conclusion that the
confinement/deconfinement transition at finite density and zero temperature is
quite different from that at finite temperature and zero density. Our results
indicate that in very dense matter the quark-gluon plasma is in essence a
weakly interacting gas of quarks and gluons without a magnetic screening mass
in the system, sharply different from a quark-gluon plasma at large
temperature.Comment: 6 pages, 4 figure
Electron-Electron Interactions in the Vacuum Polarization of Graphene
We discuss the effect of electron-electron interactions on the static
polarization properties of graphene beyond RPA. Divergent self-energy
corrections are naturally absorbed into the renormalized coupling constant
. We find that the lowest order vertex correction, which is the first
non-trivial correlation contribution, is finite, and about 30% of the RPA
result at strong coupling . The vertex correction leads to
further reduction of the effective charge. Finite contributions to dielectric
screening are expected in all orders of perturbation theory.Comment: 5 pages, 2 figures; published versio
Excitation spectrum and ground state properties of the S=1/2 Heisenberg ladder with staggered dimerization
We have studied the excitation spectrum of the quantum spin ladder
with staggered dimerization by dimer series expansions, diagrammatic analysis
of an effective interacting Bose gas of local triplets, and exact
diagonalization of small clusters. We find that the model has two massive
phases, with predominant inter-chain (rung) or intra-chain correlations. The
transition from the rung dimer into the intra-chain dimer phase is
characterized by softening of the triplet spectrum at . The excitation
spectrum as well as the spin correlations away from and close to the critical
line are calculated. The location of the phase boundary is also determined.Comment: 13 pages, 7 figure
Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions
The Heisenberg nearest neighbour antiferromagnet on the pyrochlore (3D)
lattice is highly frustrated and does not order at low temperature where
spin-spin correlations remain short ranged. Dzyaloshinsky-Moriya interactions
(DMI) may be present in pyrochlore compounds as is shown, and the consequences
of such interactions on the magnetic properties are investigated through mean
field approximation and monte carlo simulations. It is found that DMI (if
present) tremendously change the low temperature behaviour of the system. At a
temperature of the order of the DMI a phase transition to a long range ordered
state takes place. The ordered magnetic structures are explicited for the
different possible DMI which are introduced on the basis of symmetry arguments.
The relevance of such a scenario for pyrochlore compounds in which an ordered
magnetic structure is observed experimentally is dicussed
- …