103 research outputs found
Prospects for application of ultracold Sr molecules in precision measurements
Precision measurements with ultracold molecules require development of robust
and sensitive techniques to produce and interrogate the molecules. With this
goal, we theoretically analyze factors that affect frequency measurements
between rovibrational levels of the Sr molecule in the electronic ground
state. This measurement can be used to constrain the possible time variation of
the proton-electron mass ratio. Sr is expected to be a strong candidate for
achieving high precision due to the spinless nature and ease of cooling and
perturbation-free trapping of Sr \cite{Zelevinsky2008}. The analysis includes
calculations of two-photon transition dipole moments between deeply and weakly
bound vibrational levels, lifetimes of intermediate excited states, and Stark
shifts of the vibrational levels by the optical lattice field, including
possibilities of Stark-cancellation trapping.Comment: 8 pages, 10 figure
Precision Test of Mass Ratio Variations with Lattice-Confined Ultracold Molecules
We propose a precision measurement of time variations of the proton-electron
mass ratio using ultracold molecules in an optical lattice. Vibrational energy
intervals are sensitive to changes of the mass ratio. In contrast to
measurements that use hyperfine-interval-based atomic clocks, the scheme
discussed here is model-independent and does not require separation of time
variations of different physical constants. The possibility of applying the
zero-differential-Stark-shift optical lattice technique is explored to measure
vibrational transitions at high accuracy.Comment: 4 pages, 4 figure
Dispersion interactions and reactive collisions of ultracold polar molecules
Progress in ultracold experiments with polar molecules requires a clear
understanding of their interactions and reactivity at ultra-low collisional
energies. Two important theoretical steps in this process are the
characterization of interaction potentials between molecules and the modeling
of reactive scattering mechanism. Here, we report on the {\it abinitio}
calculation of isotropic and anisotropic van der Waals interaction potentials
for polar KRb and RbCs colliding with each other or with ultracold atoms. Based
on these potentials and two short-range scattering parameters we then develop a
single-channel scattering model with flexible boundary conditions. Our
calculations show that at low temperatures (and in absence of an external
electric field) the reaction rates between molecules or molecules with atoms
have a resonant character as a function of the short-range parameters. We also
find that both the isotropic and anisotropic van der Waals coefficients have
significant contributions from dipole coupling to excited electronic states.
Their values can differ dramatically from those solely obtained from the
permanent dipole moment. A comparison with recently obtained reaction rates of
fermionic KRb shows that the experimental data can not be
explained by a model where the short-range scattering parameters are
independent of the relative orbital angular momentum or partial wave.Comment: 15 pages, 12 figure
Optical Production of Stable Ultracold Sr Molecules
We have produced large samples of ultracold Sr molecules in the
electronic ground state in an optical lattice. The molecules are bound by 0.05
cm and are stable for several milliseconds. The fast, all-optical method
of molecule creation via intercombination line photoassociation relies on a
near-unity Franck-Condon factor. The detection uses a weakly bound vibrational
level corresponding to a very large dimer. This is the first of two steps
needed to create Sr in the absolute ground quantum state. Lattice-trapped
Sr is of interest to frequency metrology and ultracold chemistry.Comment: 5 pages, 3 figure
Photoassociation spectroscopy of cold alkaline earth atoms near the intercombination line
The properties of photoassociation (PA) spectra near the intercombination
line (the weak transition between and states) of group
II atoms are theoretically investigated. As an example we have carried out a
calculation for Calcium atoms colliding at ultra low temperatures of 1 mK, 1
K, and 1 nK. Unlike in most current photoassociation spectroscopy the
Doppler effect can significantly affect the shape of the investigated lines.
Spectra are obtained using Ca--Ca and Ca--Ca short-range {\it ab initio}
potentials and long-range van der Waals and resonance dipole potentials. The
similar van der Waals coefficients of ground and
excited states cause the PA to differ greatly from
those of strong, allowed transitions with resonant dipole interactions. The
density of spectral lines is lower, the Condon points are at relatively short
range, and the reflection approximation for the Franck-Condon factors is not
applicable, and the spontaneous decay to bound ground-state molecules is
efficient. Finally, the possibility of efficient production of cold molecules
is discussed
Magic conditions for multiple rotational states of bialkali molecules in optical lattices
We investigate magic-wavelength trapping of ultracold bialkali molecules in the vicinity of weak optical transitions from the vibrational ground state of the X 1 Σ + potential to low-lying rovibrational states of the b 3 Π 0 potential, focusing our discussion on the 87 Rb 133 Cs molecule in a magnetic field of B = 181 G. We show that a frequency window exists between two nearest-neighbor vibrational poles in the dynamic polarizability where the trapping potential is “near magic” for multiple rotational states simultaneously. We show that the addition of a modest DC electric field of E = 0.13 kV/cm leads to an exact magic-wavelength trap for the lowest three rotational states at a angular-frequency detuning of Δ v ′ = 0 = 2 π × 218.22 GHz from the X 1 Σ + ( v = 0 , J = 0 ) → b 3 Π 0 ( v ′ = 0 , J = 1 ) transition. We derive a set of analytical criteria that must be fulfilled to ensure the existence of such magic frequency windows and present an analytic expression for the position of the frequency window in terms of a set of experimentally measurable parameters. These results should inform future experiments requiring long coherence times on multiple rotational transitions in ultracold polar molecules
Inelastic collisions of ultra-cold heteronuclear molecules in an optical trap
Ultra-cold RbCs molecules in high-lying vibrational levels of the
a ground electronic state are confined in an optical trap.
Inelastic collision rates of these molecules with both Rb and Cs atoms are
determined for individual vibrational levels, across an order of magnitude of
binding energies. A simple model for the collision process is shown to
accurately reproduce the observed scattering rates
Collisional stability of localized Yb() atoms immersed in a Fermi sea of Li
We establish an experimental method for a detailed investigation of inelastic
collisional properties between ytterbium (Yb) in the metastable
state and ground state lithium (Li). By combining an optical
lattice and a direct excitation to the state we achieve high
selectivity on the collisional partners. Using this method we determine
inelastic loss coefficients in collisions between
Yb() with magnetic sublevels of and and
ground state Li to be
and , respectively. Absence
of spin changing processes in Yb()-Li inelastic collisions at
low magnetic fields is confirmed by inelastic loss measurements on the
state. We also demonstrate that our method allows us to look into loss
processes in few-body systems separately.Comment: 12 pages, 7 figure
- …