23 research outputs found

    Assessing the sustainability of biosand filters: Unveiling interlinkages and leveraging factors for effective implementation

    No full text
    The household slow sand filter patented biosand filter (BSF) has been implemented in several developing countries to improve access to safe water. Evaluating the sustainability of various BSF implementations is essential. However, most evaluations neglect interlinkages among factors. This leads to unclear identification of leverage points to enhance BSF sustainability, resulting in limited utility to policymakers. To address this issue, the present study carried out a systematic literature review and used systems thinking to establish complex interlinkages among some factors affecting BSF sustainability. A total of 38 studies in 21 countries from the Americas, Africa, and Asia evaluated the BSF and 31 factors were found across the studies. The most influential factors were continued use, produced water quality, operations and maintenance (OM), and willingness to pay. Continued use was positively correlated to produced water quality and negatively related to the amount of water produced. OM was positively correlated with household hygiene practices and negatively correlated with education level. Willingness to pay was positively related to household income and education level. BSF's discontinued use was attributed to broken parts and improper maintenance. This paper identified the main leverage points that should be targeted during BSF implementation to improve its sustainability. This study helps identify specific factors and enables policymakers to understand their interrelationships, facilitating well-informed decisions before implementing a BSF

    Statistical analysis of the failures of the pre-degree examination of the Poona university, 1960.

    No full text

    Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus

    No full text
    Keiko M Tarquinio1, Nikhil K Kothurkar2, Dharendra Y Goswami3, Ronald C Sanders Jr4, Arno L Zaritsky5, Ann Marie LeVine61Division of Pediatric Critical Care Medicine, Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, RI USA; 2Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Ettimadai, Coimbatore, India; 3Clean Energy Research Center, University of South Florida, Tampa, FL, USA; 4Section of Pediatric Critical Care, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital, Little Rock, AR, USA; 5Executive Medical Director, Children’s Hospital of The King’s Daughters, Norfolk, VA, USA; 6Pediatric Critical Care Medicine, University of Michigan Medical School, C.S. Mott Children’s Hospital, Ann Arbor, MI, USAPurpose: Ventilator-associated pneumonia (VAP) is a nosocomial infection resulting in significant morbidity and mortality. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are pathogens associated with VAP. Silver (Ag) coating of endotracheal tubes (ETTs) reduces bacterial colonization, however titanium dioxide (TiO2) coating has not been studied.Methods: Five types of ETT coatings were applied over silica layer: Ag, solgel TiO2, solgel TiO2 with Ag, Degussa P25 TiO2 (Degussa TiO2), and Degussa TiO2 with Ag. After ETTs were incubated with P. aeruginosa or S. aureus; colonization was determined quantitatively.Results: Pseudomonas aeruginosa and S. aureus grew for 5 days on standard ETTs. Compared to standard ETTs, P. aeruginosa growth was significantly inhibited by solgel TiO2 with Ag at 24 hours, and by Degussa TiO2 with Ag at 24 and 48 hours after inoculation. No significant difference in S. aureus growth was observed between the control and any of the five coatings for 5 days.Conclusion: In vitro, solgel TiO2 with Ag and Degussa TiO2 with Ag both attenuated P. aeruginosa growth, but demonstrated no effect on S. aureus colonization. Further studies using alternative coating and incorporating UV light exposure are needed to identify their potential utility in reducing VAP.Keywords: ventilator-associated pneumonia, Degussa titanium dioxide, solgel titanium dioxide, quantitative cultur

    Practical method of CO2 sequestration

    Get PDF
    A process and device to capture of CO2 at its originating source, such as a power plant, is disclosed. Absorbent material is recharged by desorbing CO2, so that it may be sequestered or used in another application. Continual recharging results in loss of absorbent surface area, due to pore plugging and sintering of particles. Calcium oxide or calcium hydroxide was immobilized to a fibrous ceramic-based fabric substrate as a thin film and sintered, creating an absorbent material. The samples were characterized, showing continuous cyclic carbonation conversions between about 62% and 75% under mild calcination conditions at 750° C. and no CO2 in N2. Under the more severe calcination condition at 850° C. and 20 wt % CO2 in N2, yttria fabric was superior to alumina as a substrate for carbon dioxide capture and the reactivity of the calcium oxide absorbent immobilized to yttria was maintained at the same level in the 12 cycles

    Design of an Antibiotic-Releasing Polymer: Physicochemical Characterization and Drug Release Patterns

    No full text
    Conventional drug delivery has its share of shortcomings, especially its rapid drug release with a relatively short duration of therapeutic drug concentrations, even in topical applications. Prolonged drug release can be effectively achieved by modifying the carrier in a drug delivery system. Among the several candidates for carriers studied over the years, poly (ether ether ketone), a biocompatible thermoplastic, was chosen as a suitable carrier. Its inherent hydrophobicity was overcome by controlled sulfonation, which introduced polar sulfonate groups onto the polymer backbone. Optimization of the sulfonation process was completed by the variation of the duration, temperature of the sulfonation, and concentration of sulfuric acid. The sulfonation was confirmed by EDS and the degree of sulfonation was determined by an NMR analysis (61.6% and 98.9%). Various physical properties such as morphology, mechanical strength, and thermal stability were studied using scanning electron microscopy, tensile testing, and thermogravimetric analysis. Cytotoxicity tests were performed on the SPEEK samples to study the variation in biocompatibility against a Vero cell line. The drug release kinetics of ciprofloxacin (CP) and nalidixic acid sodium salt (NA)-loaded membranes were studied in deionized water as well as SBF and compared against the absorbance of standardized solutions of the drug. The data were then used to determine the diffusion, distribution, and permeability coefficients. Various mathematical models were used to fit the obtained data to establish the order and mechanism of drug release. Studies revealed that drug release occurs by diffusion and follows zero-order kinetics

    One-step hydrothermal synthesis of marigold flower-like nanostructured MoS2 as a counter electrode for dye-sensitized solar cells

    No full text
    MoS2 thin films with marigold flower-like nanostructures were grown on conductive fluorine-doped tin oxide (FTO) substrates through a one-step hydrothermal synthesis for their application as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Different MoS2 thin film samples (A-D) were grown on FTO slides using different concentrations of precursors (sodium molybdate and thioacetamide), while keeping the Mo/S molar ratio constant (1:4.6), in all samples. The effect of varying precursor concentrations (3.2-12.6 mM on MoS2 basis) on the structure of the nanostructured thin films and their performance as DSSC-CEs was investigated. Scanning electron microscopy revealed a material with an infolded petal-like morphology. With increasing precursor concentration, the petal-like structures tended to form bunched nanostructures (100-300 nm) resembling marigold flowers. X-ray diffraction analysis, X-ray photoelectron, and Raman spectroscopy studies showed that the thin films were composed of hexagonal MoS2 with good crystallinity. Hall effect measurements revealed MoS2 to be a p-type semiconductor with a carrier mobility of 219.80 cm(2) V-1 s(-1) at room temperature. The electrochemical properties of the thin films were examined using cyclic voltammetry and electrochemical impedance spectroscopy. The marigold flower-like MoS2 thin films showed excellent electrocatalytic activity towards the I-/I-3(-) reaction and low charge transfer resistance (R-ct) values of 14.77 Omega.cm(-1), which was close to that of Pt electrode (12.30 Omega. cm(-1)). The maximum power conversion efficiency obtained with MoS2 CE-based DSSCs was 6.32%, which was comparable to a Pt CE-based DSSC (6.38%) under one sun illumination. Similarly, the maximum incident photon-to-charge carrier efficiency exhibited by MoS2 CE-based DSSCs was 65.84%, which was also comparable to a Pt CE-based DSSC (68.38%). The study demonstrated that the marigold flower-like nanostructured MoS2 films are a promising alternative to the conventional Pt-based CEs in DSSCs
    corecore