2 research outputs found

    PV ENABLED NET ZERO EV CHARGING STATION: SYSTEM DESIGN AND SIMULATION STUDY

    Get PDF
    A paradigm shift in the transportation sector is being witnessed due to resurgence of electric vehicles (EVs). They are ideally considered to be non-polluting and eco-friendly, however it has its own demerits of overloading existing grid infrastructure and, could significantly contribute towards carbon emissions depending on the source used for charging them. The ideal solution to counteract the critical shortcomings is by developing a charging infrastructure integrated with renewable energy technology. The main aim of this thesis is to design such a charging station coupled with solar energy for urban cities. Simplified EV load models are developed by considering most popular commercial EV in the market. The designed solar powered charging station is tested with the developed EV load models and, would be located in selected urban cities within Ontario. Firstly, literature review on effects of EV charging directly from grid, benefits of EV charging with renewables, and amalgamation of EV charging with Net Zero (NZ) concepts is introduced. Later, three types of system architectures are studied for solar powered charging station. Selection of architecture for this work is done considering the economics of installation, and operation. Optimization in design of solar powered charging station is presented by varying the power ratio and, obtaining the annual energy yield for different types of orientation considering all EV load models. Then, NZ Photovoltaic (PV) enabled charging station is designed and, is tested with selected load models and, energy economic analysis is done for all designs. Finally, recommendations are made encompassing the selection of net-zero based charging stations along with economic considerations and its short and long term effects on environment

    Clinical validation of a multiplex PCR-based detection assay using saliva or nasopharyngeal samples for SARS-Cov-2, influenza A and B

    Get PDF
    The COVID-19 pandemic has resulted in significant diversion of human and material resources to COVID-19 diagnostics, to the extent that influenza viruses and co-infection in COVID-19 patients remains undocumented and pose serious public-health consequences. We optimized and validated a highly sensitive RT-PCR based multiplex-assay for the detection of SARS-CoV-2, influenza A and B viruses in a single-test. This study evaluated clinical specimens (n = 1411), 1019 saliva and 392 nasopharyngeal swab (NPS), tested using two-assays: FDA-EUA approved SARS-CoV-2 assay that targets N and ORF1ab gene, and the PKamp-RT-PCR based assay that targets SARS-CoV-2, influenza viruses A and B. Of the 1019 saliva samples, 17.0% (174/1019) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [91.9% (160/174) vs. 87.9% (153/174)], respectively. Of the 392 NPS samples, 10.4% (41/392) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [97.5% (40/41) vs. 92.1% (39/41)], respectively. This study presents clinical validation of a multiplex-PCR assay for testing SARS-CoV-2, influenza A and B viruses, using NPS and saliva samples, and demonstrates the feasibility of implementing the assay without disrupting the existing laboratory workflow
    corecore