7 research outputs found

    Giant spin pumping at the ferromagnet (permalloy) – organic semiconductor (perylene diimide) interface

    Get PDF
    Pure spin current based devices have attracted great interest in recent days. Spin current injection into non-magnetic materials is essential for the design and development of such pure spin current based devices. In this context, organic semiconductors (OSCs) can be potential non-magnetic materials over widely explored heavy metals. This is due to the relatively low spin-orbit coupling of OSCs, which is essential to host the spin current with a large spin diffusion length and long spin-relaxation time. This research work demonstrates the harvesting of spin currents at the perylene diimide (PDI)/permalloy (Py) based OSC interface. The observed high linewidth broadening of 2.18 mT from the ferromagnetic resonance spectra indicates the presence of giant spin pumping from Py to PDI. The resultant spin-mixing conductance, 1.54 × 1018 m-2 quantifies the amount of spin current injected from Py to PDI, which is in a similar range to ferromagnet/heavy metals. © The Royal Society of Chemistry

    Synthesis and photo-responsive behavior of triphenylamine containing styryl chromophores

    No full text
    by Beena Kumari, Srinu Kotha and Sriram Kanva

    Synthesis and Self‐assembly of Benzoperylene Benzimidazoles: Tunable Morphology with Aggregation‐Induced Enhanced Emission

    No full text
    Benzoperylene benzimidazoles (BPBIs) based π-systems were synthesized and their self-assembly in both non-polar and polar solvents investigated. Due to the presence of donor and acceptor functional groups, BPBIs absorb light up to 600 nm and display red fluorescence (575–800 nm). Depending on the solvent and side chain, BPBIs self-assemble into various nanostructures such as nanoribbons, nanorods, nanofibers and nanoparticles. Notably, these ordered nanostructures are formed by BPBIs in both polar and non-polar solvents without the aid of hydrogen bonding and amphiphilic interactions due to the presence of a large rigid π-system. Interestingly, BPBIs follow a weakly cooperative mechanism during the self-assembly. Moreover, BPBIs show aggregation-induced enhanced emission (AIEE) in all the self-assembled nanostructures which is not common for rigid π-systems. © 2022 Wiley-VCH Gmb

    Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π-Systems

    No full text
    Solvents are fundamentally essential for the synthesis and processing of soft materials. Supramolecular polymers (SPs), an emerging class of soft materials, are usually stable in single and mixtures of poor solvents. In contrast to these preconceived notions, here we report the depolymerization of SPs in the mixture of two poor solvents. This surprising behavior was observed for well-known cationic perylene diimides (cPDIs) in the mixtures of water and amphiphilic organic solvents such as isopropanol (IPA). cPDIs form stable SPs in water and IPA but readily depolymerize into monomers in 50–70 vol% IPA containing water. This is due to the selective solvation of the π-surface of cPDIs by alkyl chains of IPA and ionic side chains by water, as evidenced by molecular dynamic simulations. Moreover, by systematically changing the ratio between water and amphiphilic organic solvent, we could achieve an unprecedented supramolecular polymerization both by increasing and decreasing the solvent polarity

    Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π‐Systems

    No full text
    Solvents are fundamentally essential for the synthesis and processing of soft materials. Supramolecular polymers (SPs), an emerging class of soft materials, are usually stable in single and mixtures of poor solvents. In contrast to these preconceived notions, here we report the depolymerization of SPs in the mixture of two poor solvents. This surprising behavior was observed for well-known cationic perylene diimides (cPDIs) in the mixtures of water and amphiphilic organic solvents such as isopropanol (IPA). cPDIs form stable SPs in water and IPA but readily depolymerize into monomers in 50–70 vol% IPA containing water. This is due to the selective solvation of the π-surface of cPDIs by alkyl chains of IPA and ionic side chains by water, as evidenced by molecular dynamic simulations. Moreover, by systematically changing the ratio between water and amphiphilic organic solvent, we could achieve an unprecedented supramolecular polymerization both by increasing and decreasing the solvent polarity. © 2020 Wiley-VCH Gmb

    Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π‐Systems

    No full text
    Solvents are fundamentally essential for the synthesis and processing of soft materials. Supramolecular polymers (SPs), an emerging class of soft materials, are usually stable in single and mixtures of poor solvents. In contrast to these preconceived notions, here we report the depolymerization of SPs in the mixture of two poor solvents. This surprising behavior was observed for well-known cationic perylene diimides (cPDIs) in the mixtures of water and amphiphilic organic solvents such as isopropanol (IPA). cPDIs form stable SPs in water and IPA but readily depolymerize into monomers in 50–70 vol% IPA containing water. This is due to the selective solvation of the π-surface of cPDIs by alkyl chains of IPA and ionic side chains by water, as evidenced by molecular dynamic simulations. Moreover, by systematically changing the ratio between water and amphiphilic organic solvent, we could achieve an unprecedented supramolecular polymerization both by increasing and decreasing the solvent polarity. © 2020 Wiley-VCH Gmb

    Cooperative Supramolecular Polymerization Guided by Dispersive Interactions

    No full text
    Cooperative supramolecular polymerization is important for the synthesis of functional supramolecular homo and block-copolymers of π-systems. Current strategies indicate the need of strong hydrogen bonding (H-bonding) and/or dipolar interactions in the π-systems to achieve cooperativity. In sharp contrast, here we report the cooperative supramolecular polymerization in alkyl chain substituted perylene diimides (alkyl PDIs) driven by dispersive interactions with molecular level understanding. Moreover, alkyl PDIs follow cooperative mechanism with cooperativity similar to the strong H-bonded π-systems (σ ∼10−5) despite the lack of strong H-bonding and dipolar interactions. Computer simulations show that this surprising phenomenon in alkyl PDIs is driven by the efficient dispersive interactions among the alkyl chains and π-cores due to their zigzag arrangement in the supramolecular polymer. Importantly, alkyl PDIs display cooperative supramolecular polymerization in both polar and non-polar solvents which is difficult for H-bonded/dipolar π-systems thus highlighting the advantages of dispersive interactions. © 2022 Wiley-VCH GmbH
    corecore