25 research outputs found
Solar System Exploration Sciences by EQUULEUS on SLS EM-1 and Science Instruments Development Status
EQUULEUS is a spacecraft to explore the cislunar region including the Earth-Moon Lagrange point L2 (EML2) and will be launched by NASA’s SLS EM-1 rocket. Although the size of EQUULEUS is only 6U, the spacecraft carries three different science instruments. By using these instruments, the spacecraft will demonstrate three missions for solar system exploration science during and after the flight to EML2; imaging of the plasmasphere around the earth, observation of space dust flux in the cislunar region, and observation of lunar impact flashes at the far side of the moon. The developments and verifications of the flight models of these science instruments were completed by the end of 2018, and we started flight model integration and testing. This paper introduces the details of the scientific objectives, design results and development statuses of the instruments. In addition, results of the integration and pre-flight tests are also described
Resin Elongation Phenomenon of Polystyrene Nanopillars in Nanoimprint Lithography
We investigated the elongation of polystyrene nanopillars formed by thermal nanoimprint lithography. Silicone and perfluoropolyether were used as mold release agents to obtain molds with different adhesion forces against polystyrene to be imprinted. The adhesion force between the resin and release layers was evaluated as a force curve by atomic force microscope with a polystyrene colloid probe. Elongation depended on the aspect ratio of the corresponding microholes on the mold and the adhesion force against the release layer. The conditions under which the elongation occurred exhibited a clear threshold on the stress loaded on the foot area of the nanopillars.
</jats:p
Translational research using a mouse model of intracranial aneurysm
We have developed a mouse model of intracranial aneurysm that recapitulates key features of human intracranial aneurysms. In this model, spontaneous aneurysmal rupture occurs with a predictable time course. Aneurysmal rupture in this model can be easily detected by assessing neurological symptoms. Similar to human intracranial aneurysms, intracranial aneurysms in this model show an infiltration with inflammatory cells. This mouse model can be used to study the mechanisms and the potential preventive treatments for aneurysmal rupture
Influences of Process Parameters on the Microstructure and Mechanical Properties of CoCrFeNiTi Based High-Entropy Alloy in a Laser Powder Bed Fusion Process
Recently, high-entropy alloys (HEAs) have attracted much attention because of their superior properties, such as high strength and corrosion resistance. This study aimed to investigate the influences of process parameters on the microstructure and mechanical properties of CoCrFe NiTiMo HEAs using a laser-based powder bed fusion (LPBF) process. In terms of laser power and scan speed, a process map was constructed by evaluating the density and surface roughness of the as-built specimen to optimize the process parameters of the products. The mechanical properties of the as-built specimens fabricated at the optimum fabrication condition derived from the process map were evaluated. Consequently, the optimum laser power and scan speed could be obtained using the process map evaluated by density and surface roughness. The as-built specimen fabricated at the optimum fabrication condition presented a relative density of more than 99.8%. The microstructure of the as-built specimen exhibited anisotropy along the build direction. The tensile strength and elongation of the as-built specimen were around 1150 MPa and more than 20%, respectively
Mast Cell Promotes the Development of Intracranial Aneurysm Rupture
Background and Purpose: Inflammation has emerged as a key component of the pathophysiology of intracranial aneurysms. Mast cells have been detected in human intracranial aneurysm tissues, and their presence was associated with intramural microhemorrhage and wall degeneration. We hypothesized that mast cells play a critical role in the development of aneurysmal rupture, and that mast cells can be used as a therapeutic target for the prevention of aneurysm rupture. Methods: Intracranial aneurysms were induced in adult mice using a combination of induced systemic hypertension and a single injection of elastase into the cerebrospinal fluid. Aneurysm formation and rupture were assessed over 3 weeks. Roles of mast cells were assessed using a mast cell stabilizer (cromolyn), a mast cell activator (C48/80), and mice that are genetically lacking mature mast cells (Kit mice). Results: Pharmacological stabilization of mast cells with cromolyn markedly decreased the rupture rate of aneurysms (80% versus 19%, n=10 versus n =16) without affecting the aneurysm formation. The activation of mast cells with C48/80 significantly increased the rupture rate of aneurysms (25% versus 100%, n=4 versus n=5) without affecting the overall rate of aneurysm formation. Furthermore, the genetic deficiency of mast cells significantly prevented aneurysm rupture (80% versus 25%, n=10 versus n=8, wild-Type versus Kit mice). Conclusions: These results suggest that mast cells play a key role in promoting aneurysm rupture but not formation. Stabilizers of mast cells may have a potential therapeutic value in preventing intracranial aneurysm rupture in patients. W-sh/W-sh W-sh/W-s