719 research outputs found
Scattering in the adjoint sector of the c = 1 Matrix Model
Closed string tachyon emission from a traveling long string in Liouville
string theory is studied. The exact collective field Hamiltonian in the adjoint
sector of the c=1 matrix model is computed to capture the interaction between
the tip of the long string and the closed string tachyon field. The amplitude
for emission of a single tachyon quantum is obtained in a closed form using the
chiral formalism.Comment: 22 pages, 2 figure
Quasiperiodic Solutions of the Fibre Optics Coupled Nonlinear Schr{\"o}dinger Equations
We consider travelling periodical and quasiperiodical waves in single mode
fibres, with weak birefringence and under the action of cross-phase modulation.
The problem is reduced to the ``1:2:1" integrable case of the two-particle
quartic potential. A general approach for finding elliptic solutions is given.
New solutions which are associated with two-gap Treibich-Verdier potentials are
found. General quasiperiodic solutions are given in terms of two dimensional
theta functions with explicit expressions for frequencies in terms of theta
constants. The reduction of quasiperiodic solutions to elliptic functions is
discussed.Comment: 24 page
Hermitian Matrix Model with Plaquette Interaction
We study a hermitian -matrix model with plaquette interaction,
. By means of a conformal transformation we rewrite the
model as an model on a random lattice with a non polynomial potential.
This allows us to solve the model exactly. We investigate the critical
properties of the plaquette model and find that for the model
belongs to the same universality class as the model on a random lattice.Comment: 15 pages, no figures, two references adde
2D Quantum Gravity and The Miura Map
We study the sL(3,C) mKDV string theories. We obtain the flows and the string
equations. Using the generalized Miura map, we show that we have an unification
of these models with the [P,Q]=Q sL(3,C) KDV ones in the framework of
open-closed string theories in minimal models backgrounds.Comment: 12 pages, phyzz
A Spatial Quantile Regression Hedonic Model of Agricultural Land Prices
Abstract Land price studies typically employ hedonic analysis to identify the impact of land characteristics on price. Owing to the spatial fixity of land, however, the question of possible spatial dependence in agricultural land prices arises. The presence of spatial dependence in agricultural land prices can have serious consequences for the hedonic model analysis. Ignoring spatial autocorrelation can lead to biased estimates in land price hedonic models. We propose using a flexible quantile regression-based estimation of the spatial lag hedonic model allowing for varying effects of the characteristics and, more importantly, varying degrees of spatial autocorrelation. In applying this approach to a sample of agricultural land sales in Northern Ireland we find that the market effectively consists of two relatively separate segments. The larger of these two segments conforms to the conventional hedonic model with no spatial lag dependence, while the smaller, much thinner market segment exhibits considerable spatial lag dependence. Un mod�le h�donique � r�gression quantile spatiale des prix des terrains agricoles R�sum� Les �tudes sur le prix des terrains font g�n�ralement usage d'une analyse h�donique pour identifier l'impact des caract�ristiques des terrains sur le prix. Toutefois, du fait de la fixit� spatiale des terrains, la question d'une �ventuelle d�pendance spatiale sur la valeur des terrains agricoles se pose. L'existence d'une d�pendance spatiale dans le prix des terrains agricoles peut avoir des cons�quences importantes sur l'analyse du mod�le h�donique. En ignorant cette corr�lation s�rielle, on s'expose au risque d'�valuations biais�es des mod�les h�doniques du prix des terrains. Nous proposons l'emploi d'une estimation � base de r�gression flexible du mod�le h�donique � d�calage spatial, tenant compte de diff�rents effets des caract�ristiques, et surtout de diff�rents degr�s de corr�lations s�rielles spatiales. En appliquant ce principe � un �chantillon de ventes de terrains agricoles en Irlande du Nord, nous d�couvrons que le march� se compose de deux segments relativement distincts. Le plus important de ces deux segments est conforme au mod�le h�donique traditionnel, sans d�pendance du d�calage spatial, tandis que le deuxi�me segment du march�, plus petit et beaucoup plus �troit, pr�sente une d�pendance consid�rable du d�calage spatial. Un modelo hed�nico de regresi�n cuantil espacial de los precios del terreno agr�cola Resumen T�picamente, los estudios del precio de la tierra emplean un an�lisis hed�nico para identificar el impacto de las caracter�sticas de la tierra sobre el precio. No obstante, debido a la fijeza espacial de la tierra, surge la cuesti�n de una posible dependencia espacial en los precios del terreno agr�cola. La presencia de dependencia espacial en los precios del terreno agr�cola puede tener consecuencias graves para el modelo de an�lisis hed�nico. Ignorar la autocorrelaci�n espacial puede conducir a estimados parciales en los modelos hed�nicos del precio de la tierra. Proponemos el uso de una valoraci�n basada en una regresi�n cuantil flexible del modelo hed�nico del lapso espacial que tenga en cuenta los diversos efectos de las caracter�sticas y, particularmente, los diversos grados de autocorrelaci�n espacial. Al aplicar este planteamiento a una muestra de ventas de terreno agr�cola en Irlanda del Norte, descubrimos que el mercado consiste efectivamente de dos segmento relativamente separados. El m�s grande de estos dos segmentos se ajusta al modelo hed�nico convencional sin dependencia del lapso espacial, mientras que el segmento m�s peque�o, y mucho m�s fino, muestra una dependencia considerable del lapso espacial.Spatial lag, quantile regression, hedonic model, C13, C14, C21, Q24,
Integrability in SFT and new representation of KP tau-function
We are investigating the properties of vacuum and boundary states in the CFT
of free bosons under the conformal transformation. We show that transformed
vacuum (boundary state) is given in terms of tau-functions of dispersionless KP
(Toda) hierarchies. Applications of this approach to string field theory is
considered. We recognize in Neumann coefficients the matrix of second
derivatives of tau-function of dispersionless KP and identify surface states
with the conformally transformed vacuum of free field theory.Comment: 25 pp, LaTeX, reference added in the Section 3.
Lam\'e polynomials, hyperelliptic reductions and Lam\'e band structure
The band structure of the Lam\'e equation, viewed as a one-dimensional
Schr\"odinger equation with a periodic potential, is studied. At integer values
of the degree parameter l, the dispersion relation is reduced to the l=1
dispersion relation, and a previously published l=2 dispersion relation is
shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses
Lam\'e equation solutions in terms of l=1 solutions, is the chief tool. It is
based on a projection from a genus-l hyperelliptic curve, which parametrizes
solutions, to an elliptic curve. A general formula for this covering is
derived, and is used to reduce certain hyperelliptic integrals to elliptic
ones. Degeneracies between band edges, which can occur if the Lam\'e equation
parameters take complex values, are investigated. If the Lam\'e equation is
viewed as a differential equation on an elliptic curve, a formula is
conjectured for the number of points in elliptic moduli space (elliptic curve
parameter space) at which degeneracies occur. Tables of spectral polynomials
and Lam\'e polynomials, i.e., band edge solutions, are given. A table in the
older literature is corrected.Comment: 38 pages, 1 figure; final revision
- …