4,895 research outputs found

    OXYGEN K

    Get PDF
    The O K spectra of these 3 products, at -160 Deg, show a prominent peak at 532 eV. In ice and solid MeOH, the principal peak occurs at 526 eV. The ice spectrum has also a well-defined subpeak at 520 eV; it is due to a transition from 1 of the MO. The main band and also the subpeak are broader in MeOH than in ice. The transition at 526 eV results from a 1b1 nonbonding orbital (2pp lone pair) and thus can be called an ionic transition. The O subband at 520 eV stems from a 1b2 bonding orbital (2ps type). The spectrum from solidified CO2 also shows 2 peaks, at 527 and 523 eV, the former one being an ionic peak. EtOH, PrOH, and BuOH yield spectra indistinguishable from that of MeOH

    Theory of spin-orbit coupling in bilayer graphene

    Get PDF
    Theory of spin-orbit coupling in bilayer graphene is presented. The electronic band structure of the AB bilayer in the presence of spin-orbit coupling and a transverse electric field is calculated from first-principles using the linearized augmented plane wave method implemented in the WIEN2k code. The first-principles results around the K points are fitted to a tight-binding model. The main conclusion is that the spin-orbit effects in bilayer graphene derive essentially from the single-layer spin-orbit coupling which comes almost solely from the d orbitals. The intrinsic spin-orbit splitting (anticrossing) around the K points is about 24\mu eV for the low-energy valence and conduction bands, which are closest to the Fermi level, similarly as in the single layer graphene. An applied transverse electric field breaks space inversion symmetry and leads to an extrinsic (also called Bychkov-Rashba) spin-orbit splitting. This splitting is usually linearly proportional to the electric field. The peculiarity of graphene bilayer is that the low-energy bands remain split by 24\mu eV independently of the applied external field. The electric field, instead, opens a semiconducting band gap separating these low-energy bands. The remaining two high-energy bands are spin-split in proportion to the electric field; the proportionality coefficient is given by the second intrinsic spin-orbit coupling, whose value is 20\mu eV. All the band-structure effects and their spin splittings can be explained by our tight-binding model, in which the spin-orbit Hamiltonian is derived from symmetry considerations. The magnitudes of intra- and interlayer couplings---their values are similar to the single-layer graphene ones---are determined by fitting to first-principles results.Comment: 16 pages, 13 figures, 5 tables, typos corrected, published versio

    Electronic coupling between Bi nanolines and the Si(001) substrate: An experimental and theoretical study

    Full text link
    Atomic nanolines are one dimensional systems realized by assembling many atoms on a substrate into long arrays. The electronic properties of the nanolines depend on those of the substrate. Here, we demonstrate that to fully understand the electronic properties of Bi nanolines on clean Si(001) several different contributions must be accounted for. Scanning tunneling microscopy reveals a variety of different patterns along the nanolines as the imaging bias is varied. We observe an electronic phase shift of the Bi dimers, associated with imaging atomic p-orbitals, and an electronic coupling between the Bi nanoline and neighbouring Si dimers, which influences the appearance of both. Understanding the interplay between the Bi nanolines and Si substrate could open a novel route to modifying the electronic properties of the nanolines.Comment: 6 pages (main), 2 pages (SI), accepted by Phys. Rev.

    Tendency Bias Correction in Coupled and Uncoupled Global Climate Models with a Focus on Impacts over North America

    Get PDF
    We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term (6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric tendencies improves the models climatology, variability, and ultimately forecast skill at subseasonal and seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphereocean) modes. For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias over the central United States during boreal summerlong-standing errors that are indeed common to many current AGCMs. The results show that the tendency bias correction (TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These changes are accompanied by much improved (increased) storm-track activity throughout the northern midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the simulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets and related submonthly transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast skill over North America is only modest at best. The reasons for this, which are presumably relevant to any forecast system, involve the competing influences of predictability loss with time and the time it takes for climate drift to first have a significant impact on forecast skill

    Role of therapeutic drug monitoring in pulmonary infections : use and potential for expanded use of dried blood spot samples

    Get PDF
    Respiratory tract infections are among the most common infections in men. We reviewed literature to document their pharmacological treatments, and the extent to which therapeutic drug monitoring (TDM) is needed during treatment. We subsequently examined potential use of dried blood spots as sample procedure for TDM. TDM was found to be an important component of clinical care for many (but not all) pulmonary infections. For gentamicin, linezolid, voriconazole and posaconazole dried blood spot methods and their use in TDM were already evident in literature. For glycopeptides, beta-lactam antibiotics and fluoroquinolones it was determined that development of a dried blood spot (DBS) method could be useful. This review identifies specific antibiotics for which development of DBS methods could support the optimization of treatment of pulmonary infections

    Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-layer- induced Octahedral Distortion

    Get PDF
    With reduced dimensionality, it is often easier to modify the properties of ultra-thin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultra-thin perovskite SrRuO3 films by the deposition of a SrTiO3 capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show increase in the Curie temperature of SrRuO3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.Comment: Main-text 5 pages, SI 6 pages. To appear in Physical Review Letter

    Determination of the spin-flip time in ferromagnetic SrRuO3 from time-resolved Kerr measurements

    Get PDF
    We report time-resolved Kerr effect measurements of magnetization dynamics in ferromagnetic SrRuO3. We observe that the demagnetization time slows substantially at temperatures within 15K of the Curie temperature, which is ~ 150K. We analyze the data with a phenomenological model that relates the demagnetization time to the spin flip time. In agreement with our observations the model yields a demagnetization time that is inversely proportional to T-Tc. We also make a direct comparison of the spin flip rate and the Gilbert damping coefficient showing that their ratio very close to kBTc, indicating a common origin for these phenomena

    Nuclear Tetrahedral Symmetry: Possibly Present Throughout the Periodic Table

    Full text link
    More than half a century after the fundamental, spherical shell structure in nuclei has been established, theoretical predictions indicate that the shell-gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TdDT_d^D ('double-tetrahedral') group of symmetry, exact or approximate. The corresponding strong shell-gap structure is markedly enhanced by the existence of the 4-dimensional irreducible representations of the group in question and consequently it can be seen as a geometrical effect that does not depend on a particular realization of the mean-field. Possibilities of discovering the corresponding symmetry in experiment are discussed.Comment: 4 pages in LaTeX and 4 figures in eps forma

    Optimized fabrication of high quality La0.67Sr0.33MnO3 thin films considering all essential characteristics

    Full text link
    In this article, an overview of the fabrication and properties of high quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 {\mu}B/Mn, a Curie temperature of 350 K and a residual resistivity of 60 {\mu}{\Omega}cm. These results indicate that high quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high quality films, all properties have to be adressed. For LSMO devices, the thin film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.Comment: Accepted for publication in Journal of Physics D - Applied Physic
    corecore