6 research outputs found

    Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The pseudorapidity density of charged particles (dNch/dη) at mid-rapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of sNN−−−√ = 5.02 TeV. It increases with centrality and reaches a value of 1943±54 in |η|<0.5 for the 5% most central collisions. A rise in dNch/dη as a function of sNN−−−√ for the most central collisions is observed, steeper than that observed in proton-proton collisions and following the trend established by measurements at lower energy. The centrality dependence of dNch/dη as a function of the average number of participant nucleons, ⟨Npart⟩, calculated in a Glauber model, is compared with the previous measurement at lower energy. A constant factor of about 1.2 describes the increase in 2⟨Npart⟩⟨dNch/dη⟩ from sNN−−−√ = 2.76 TeV to sNN−−−√ = 5.02 TeV for all centrality intervals, within the measured range of 0-80% centrality. The results are also compared to models based on different mechanisms for particle production in nuclear collisions

    Measurement of transverse energy at midrapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    We report the transverse energy (ET) measured with ALICE at midrapidity in Pb-Pb collisions at sNN−−−√ = 2.76 TeV as a function of centrality. The transverse energy was measured using identified single particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean ET per unit pseudorapidity (η), ⟨dET/dη⟩, in 0-5% central collisions is 1737 ± 6(stat.) ± 97(sys.) GeV. We find a similar centrality dependence of the shape of ⟨dET/dη⟩ as a function of the number of participating nucleons to that seen at lower energies. The growth in ⟨dET/dη⟩ at the LHC sNN−−−√ exceeds extrapolations of low energy data. We observe a nearly linear scaling of ⟨dET/dη⟩ with the number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate that the energy density in 0-5% central Pb-Pb collisions at sNN−−−√ = 2.76 TeV is 12.3 ± 1.0 GeV/fm3\xspace and that the energy density at the most central 80 fm2 of the collision is at least 21.5 ± 1.7 GeV/fm3. This is roughly 2.3 times that observed in 0-5% central Au-Au collisions at sNN−−−√ = 200 GeV

    Centrality dependence of ψ(2S) suppression in p-Pb collisions at √sNN = 5.02 TeV

    No full text
    The inclusive production of the ψ(2S) charmonium state was studied as a function of centrality in p-Pb collisions at the nucleon-nucleon center of mass energy sNN−−−√ = 5.02 TeV at the CERN LHC. The measurement was performed with the ALICE detector in the center of mass rapidity ranges −4.46<ycms<−2.96 and 2.03<ycms<3.53, down to zero transverse momentum, by reconstructing the ψ(2S) decay to a muon pair. The ψ(2S) production cross section σψ(2S) is presented as a function of the collision centrality, which is estimated through the energy deposited in forward rapidity calorimeters. The relative strength of nuclear effects on the ψ(2S) and on the corresponding 1S charmonium state J/ψ is then studied by means of the double ratio of cross sections [σψ(2S)/σJ/ψ]pPb/[σψ(2S)/σJ/ψ]pp between p-Pb and pp collisions, and by the values of the nuclear modification factors for the two charmonium states. The results show a large suppression of ψ(2S) production relative to the J/ψ at backward rapidity, corresponding to the flight direction of the Pb-nucleus, while at forward rapidity the suppressions of the two states are comparable. Finally, comparisons to results from lower energy experiments and to available theoretical models are presented

    Anisotropic flow of charged particles in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report the first results of elliptic (v2), triangular (v3) and quadrangular flow (v4) of charged particles in Pb-Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region |η|<0.8 and for the transverse momentum range 0.2<pT<5 GeV/c. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multi-particle cumulant method. Compared to results from Pb-Pb collisions at sNN−−−√=2.76 TeV, the anisotropic flow coefficients v2, v3 and v4 are found to increase by (3.0±0.6)%, (4.3±1.4)% and (10.2±3.8)%, respectively, in the centrality range 0-50%. This increase can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This comparison provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further discriminate between various possibilities for the temperature dependence of shear viscosity to entropy density ratio of the produced matter in heavy-ion collisions at the highest energies

    Multipion Bose-Einstein correlations in pp, p-Pb, and Pb-Pb collisions at the LHC

    No full text
    Three- and four-pion Bose-Einstein correlations are presented in pp, p-Pb, and Pb-Pb collisions at the LHC. We compare our measured four-pion correlations to the expectation derived from two- and three-pion measurements. Such a comparison provides a method to search for coherent pion emission. We also present mixed-charge correlations in order to demonstrate the effectiveness of several analysis procedures such as Coulomb corrections. Same-charge four-pion correlations in pp and p-Pb appear consistent with the expectations from three-pion measurements. However, the presence of non-negligible background correlations in both systems prevent a conclusive statement. In Pb-Pb collisions, we observe a significant suppression of three- and four-pion Bose-Einstein correlations compared to expectations from two-pion measurements. There appears to be no centrality dependence of the suppression within the 0-50% centrality interval. The origin of the suppression is not clear. However, by postulating either coherent pion emission or large multibody Coulomb effects, the suppression may be explained

    Centrality dependence of charged jet production in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Measurements of charged jet production as a function of centrality are presented for p-Pb collisions recorded at sNN−−−√=5.02 TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon-nucleon collisions is determined based on the particle production in the Pb-going rapidity region. Jets have been reconstructed in the central rapidity region from charged particles with the anti-kT algorithm for resolution parameters R=0.2 and R=0.4 in the transverse momentum range 20 to 120 GeV/c. The reconstructed jet momentum and yields have been corrected for detector effects and underlying-event background. In the five centrality bins considered, the charged jet production in p-Pb collisions is consistent with the production expected from binary scaling from pp collisions. The ratio of jet yields reconstructed with the two different resolution parameters is also independent of the centrality selection, demonstrating the absence of major modifications of the radial jet structure in the reported centrality classes
    corecore