18 research outputs found

    Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem Formulation

    Full text link
    Event-based cameras record an asynchronous stream of per-pixel brightness changes. As such, they have numerous advantages over the standard frame-based cameras, including high temporal resolution, high dynamic range, and no motion blur. Due to the asynchronous nature, efficient learning of compact representation for event data is challenging. While it remains not explored the extent to which the spatial and temporal event "information" is useful for pattern recognition tasks. In this paper, we focus on single-layer architectures. We analyze the performance of two general problem formulations: the direct and the inverse, for unsupervised feature learning from local event data (local volumes of events described in space-time). We identify and show the main advantages of each approach. Theoretically, we analyze guarantees for an optimal solution, possibility for asynchronous, parallel parameter update, and the computational complexity. We present numerical experiments for object recognition. We evaluate the solution under the direct and the inverse problem and give a comparison with the state-of-the-art methods. Our empirical results highlight the advantages of both approaches for representation learning from event data. We show improvements of up to 9 % in the recognition accuracy compared to the state-of-the-art methods from the same class of methods

    Online Weight-adaptive Nonlinear Model Predictive Control

    Full text link
    Nonlinear Model Predictive Control (NMPC) is a powerful and widely used technique for nonlinear dynamic process control under constraints. In NMPC, the state and control weights of the corresponding state and control costs are commonly selected based on human-expert knowledge, which usually reflects the acceptable stability in practice. Although broadly used, this approach might not be optimal for the execution of a trajectory with the lowest positional error and sufficiently "smooth" changes in the predicted controls. Furthermore, NMPC with an online weight update strategy for fast, agile, and precise unmanned aerial vehicle navigation, has not been studied extensively. To this end, we propose a novel control problem formulation that allows online updates of the state and control weights. As a solution, we present an algorithm that consists of two alternating stages: (i) state and command variable prediction and (ii) weights update. We present a numerical evaluation with a comparison and analysis of different trade-offs for the problem of quadrotor navigation. Our computer simulation results show improvements of up to 70% in the accuracy of the executed trajectory compared to the standard solution of NMPC with fixed weights

    Privacy-Preserving Identification via Layered Sparse Code Design: Distributed Servers and Multiple Access Authorization

    Full text link
    We propose a new computationally efficient privacy-preserving identification framework based on layered sparse coding. The key idea of the proposed framework is a sparsifying transform learning with ambiguization, which consists of a trained linear map, a component-wise nonlinearity and a privacy amplification. We introduce a practical identification framework, which consists of two phases: public and private identification. The public untrusted server provides the fast search service based on the sparse privacy protected codebook stored at its side. The private trusted server or the local client application performs the refined accurate similarity search using the results of the public search and the layered sparse codebooks stored at its side. The private search is performed in the decoded domain and also the accuracy of private search is chosen based on the authorization level of the client. The efficiency of the proposed method is in computational complexity of encoding, decoding, "encryption" (ambiguization) and "decryption" (purification) as well as storage complexity of the codebooks.Comment: EUSIPCO 201

    Online weight-adaptive nonlinear model predictive control

    Full text link
    corecore