7 research outputs found

    Chua mem-components for adaptive RF metamaterials

    Get PDF
    Chua's mem-components are ideal for creating adaptive metasurfaces for manipulating EM waves given that they hold their state without external biases. In this paper, we propose a generic adaptive reactive element that is in fact a memcapacitor/meminductor. This element makes use of a polymer that demonstrates reversible trans-cis photochemical isomerization, thus making it possible to change the distance between two conductive plates by up to 25%. Furthermore, a design methodology for utilizing these devices is presented

    An Optically-Programmable Absorbing Metasurface

    Get PDF
    A tunable metasurface absorber is presented in this work using an optically-programmable capacitor as the tuning element. The tuning element does not employ conventional semiconductor technologies to operate but rather a bases its tuning by changing the optomechanical properties of its dielectric, poly disperse red 1 acrylate (PDR1A). Doing so there are no conventional semiconductor devices in the RF signal path. The metasurface operates at a design frequency of 5.5 GHz and it achieves an optically-tuned bandwidth of 150 MHz, from 5.50 GHz to 5.65 GHz

    ABSense: Sensing Electromagnetic Waves on Metasurfaces via Ambient Compilation of Full Absorption

    Get PDF
    Metasurfaces constitute effective media for manipulating and transforming impinging EM waves. Related studies have explored a series of impactful MS capabilities and applications in sectors such as wireless communications, medical imaging and energy harvesting. A key-gap in the existing body of work is that the attributes of the EM waves to-be-controlled (e.g., direction, polarity, phase) are known in advance. The present work proposes a practical solution to the EM wave sensing problem using the intelligent and networked MS counterparts-the HyperSurfaces (HSFs), without requiring dedicated field sensors. An nano-network embedded within the HSF iterates over the possible MS configurations, finding the one that fully absorbs the impinging EM wave, hence maximizing the energy distribution within the HSF. Using a distributed consensus approach, the nano-network then matches the found configuration to the most probable EM wave traits, via a static lookup table that can be created during the HSF manufacturing. Realistic simulations demonstrate the potential of the proposed scheme. Moreover, we show that the proposed workflow is the first-of-its-kind embedded EM compiler, i.e., an autonomic HSF that can translate high-level EM behavior objectives to the corresponding, low-level EM actuation commands.Comment: Publication: Proceedings of ACM NANOCOM 2019. This work was funded by the European Union via the Horizon 2020: Future Emerging Topics call (FETOPEN), grant EU736876, project VISORSURF (http://www.visorsurf.eu

    Manufacturing of high frequency substrates as software programmable metasurfaces on PCBs with integrated controller nodes

    No full text
    | openaire: EC/H2020/736876/EU//VISORSURFThe proposed work is performed in the framework of the FET-EU project "VISORSURF", which has undertaken research activities on the emerging concepts of metamaterials that can be software programmable and adapt their properties. In the realm of electromagnetism (EM), the field of metasurfaces (MSF) has reached significant breakthroughs in correlating the micro- or nano-structure of artificial planar materials to their end properties. MSFs exhibit physical properties not found in nature, such as negative or smaller-than-unity refraction index, allowing for EM cloaking of objects, reflection cancellation from a given surface and EM energy concentration in as-tight-as-possible spaces.The VISORSURF main objective is the development of a hardware platform, the Hypersurface, whose electromagnetic behavior can be defined programmatically. The key enablers for this are the metasurfaces whose electromagnetic properties depend on their internal structure. The Hypersurface hardware platform will be a 4-layer build-up of high frequency PCB substrate materials and will merge the metasurfaces with custom electronic controller nodes at the bottom of the PCB hardware platform. These electronic controllers build a nanonetwork which receives external programmatic commands and alters the metasurface structure, yielding a desired electromagnetic behavior for the Hypersurface platform.This paper will elaborate on how large scale PCB technologies are deployed for the economical manufacturing of the 4-layer Hypersurface PCB hardware platform with a size of 9"x12", having copper metasurface patches on the top of the board and the electronic controllers as 2mmx2mm WLCSP chips at 400µm pitch assembled at the bottom of the platform. The PCB platform designs have stemmed from EM modeling iterations of the whole stack of high frequency laminates taking into account also the electronic features of the controller nodes. The manufacturing processes for the realization of the selected PCB architectures will be discussed in detail.Peer reviewe

    Electromagnetic Aspects of Practical Approaches to Realization of Intelligent Metasurfaces

    No full text
    | openaire: EC/H2020/736876/EU//VISORSURFWe thoroughly investigate the electromagnetic response of intelligent functional metasurfaces. We study two distinct designs operating at different frequency regimes, namely, a switch-fabric-based design for GHz frequencies and a graphene-based approach for THz band, and discuss the respective practical design considerations. The performance for tunable perfect absorption applications is assessed in both cases.Peer reviewe

    High frequency substrate technologies for the realisation of software programmable metasurfaces on pcb hardware platforms with integrated controller nodes

    No full text
    | openaire: EC/H2020/736876/EU//VISORSURFThe proposed work is performed in the framework of the FET-EU project ' VISORSURF^{J\prime}, which has undertaken research activities on the emerging concepts of metamaterials that can be software programmable and adapt their properties. In the realm of electromagnetism (EM), the field of metasurfaces (MSF) has reached significant breakthroughs in correlating the micro- or nano-structure of artificial planar materials to their end properties. MSFs exhibit physical properties not found in nature, such as negative or smaller-than-unity refraction index, allowing for EM cloaking of objects, reflection cancellation from a given surface and EM energy concentration in as-tight-as-possible spaces. The VISORSURF main objective is the development of a hardware platform, the Hypersurface, whose electromagnetic behavior can be defined programmatically. The key enablers for this are the metasurfaces whose electromagnetic properties depend on their internal structure. The Hypersurface hardware platform will be a 4-layer build-up of high frequency PCB substrate materials and will merge the metasurfaces with custom electronic controller nodes at the bottom of the PCB hardware platform. These electronic controllers build a nanonetwork which receives external programmatic commands and alters the metasurface structure, yielding a desired electromagnetic behavior for the Hypersurface platform. This paper will elaborate on how large scale PCB technologies are deployed for the economical manufacturing of the 4-layer Hypersurface PCB hardware platform with a size of 9Jx1 2J', having copper metasurface patches on the top of the board and the electronic controllers as 2mmx2mm WLCSP chips at 400\mum pitch assembled at the bottom of the platform. The PCB platform designs have stemmed from EM modeling iterations of the whole stack of high frequency laminates taking into account also the electronic features of the controller nodes. The manufacturing processes for the realization of the selected PCB architectures will be discussed in detail.Peer reviewe

    Software-Defined Metasurface Paradigm

    No full text
    | openaire: EC/H2020/736876/EU//VISORSURFHyperSurfaces (HSFs) are devices whose electromagnetic (EM) behavior is software-driven, i.e., it can be defined programmatically. The key components of this emerging technology are the metasurfaces, artificial layered materials whose EM properties depend on their internal subwavelength structuring. HSFs merge metasurfaces with a network of miniaturized custom electronic controllers, the nanonetwork, in an integrated scalable hardware platform. The nanonetwork receives external programmatic commands expressing the desired end-functionality and appropriately alters the metasurface configuration thus yielding the respective EM behavior for the HSF. In this work, we will present all the components of the HSF paradigm, as well as highlight the underlying challenges and future prospects.Peer reviewe
    corecore