22 research outputs found

    Disentangling geometry and appearance with regularised geometry-aware generative adversarial networks

    Get PDF
    Deep generative models have significantly advanced image generation, enabling generation of visually pleasing images with realistic texture. Apart from the texture, it is the shape geometry of objects that strongly dictates their appearance. However, currently available generative models do not incorporate geometric information into the image generation process. This often yields visual objects of degenerated quality. In this work, we propose a regularized Geometry-Aware Generative Adversarial Network (GAGAN) which disentangles appearance and shape in the latent space. This regularized GAGAN enables the generation of images with both realistic texture and shape. Specifically, we condition the generator on a statistical shape prior. The prior is enforced through mapping the generated images onto a canonical coordinate frame using a differentiable geometric transformation. In addition to incorporating geometric information, this constrains the search space and increases the model’s robustness. We show that our approach is versatile, able to generalise across domains (faces, sketches, hands and cats) and sample sizes (from as little as ∼200-30,000 to more than 200, 000). We demonstrate superior performance through extensive quantitative and qualitative experiments in a variety of tasks and settings. Finally, we leverage our model to automatically and accurately detect errors or drifting in facial landmarks detection and tracking in-the-wild

    RoCGAN: robust conditional GAN

    Get PDF
    Conditional image generation lies at the heart of computer vision and conditional generative adversarial networks (cGAN) have recently become the method of choice for this task, owing to their superior performance. The focus so far has largely been on performance improvement, with little effort in making cGANs more robust to noise. However, the regression (of the generator) might lead to arbitrarily large errors in the output, which makes cGANs unreliable for real-world applications. In this work, we introduce a novel conditional GAN model, called RoCGAN, which leverages structure in the target space of the model to address the issue. Specifically, we augment the generator with an unsupervised pathway, which promotes the outputs of the generator to span the target manifold, even in the presence of intense noise. We prove that RoCGAN share similar theoretical properties as GAN and establish with both synthetic and real data the merits of our model. We perform a thorough experimental validation on large scale datasets for natural scenes and faces and observe that our model outperforms existing cGAN architectures by a large margin. We also empirically demonstrate the performance of our approach in the face of two types of noise (adversarial and Bernoulli)

    GroSS: Group-Size Series Decomposition for Grouped Architecture Search

    Get PDF
    We present a novel approach which is able to explore the configuration of grouped convolutions within neural networks. Group-size Series (GroSS) decomposition is a mathematical formulation of tensor factorisation into a series of approximations of increasing rank terms. GroSS allows for dynamic and differentiable selection of factorisation rank, which is analogous to a grouped convolution. Therefore, to the best of our knowledge, GroSS is the first method to enable simultaneous training of differing numbers of groups within a single layer, as well as all possible combinations between layers. In doing so, GroSS is able to train an entire grouped convolution architecture search-space concurrently. We demonstrate this through architecture searches with performance objectives on multiple datasets and networks. GroSS enables more effective and efficient search for grouped convolutional architectures.Comment: Accepted for publication at ECCV 202

    TensorLy: tensor learning in Python

    Get PDF
    Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone of traditional machine learning and data analysis, tensor methods have been gaining increasing traction. However, software support for tensor operations is not on the same footing. In order to bridge this gap, we have developed TensorLy, a Python library that provides a high-level API for tensor methods and deep tensorized neural networks. TensorLy aims to follow the same standards adopted by the main projects of the Python scientific community, and to seamlessly integrate with them. Its BSD license makes it suitable for both academic and commercial applications. TensorLy's backend system allows users to perform computations with several libraries such as NumPy or PyTorch to name but a few. They can be scaled on multiple CPU or GPU machines. In addition, using the deep-learning frameworks as backend allows to easily design and train deep tensorized neural networks. TensorLy is available at https://github.com/tensorly/tensorl

    GAGAN: geometry-aware generative adversarial networks

    Get PDF
    Deep generative models learned through adversarial training have become increasingly popular for their ability to generate naturalistic image textures. However, aside from their texture, the visual appearance of objects is significantly influenced by their shape geometry; information which is not taken into account by existing generative models. This paper introduces the Geometry-Aware Generative Adversarial Networks (GAGAN) for incorporating geometric information into the image generation process. Specifically, in GAGAN the generator samples latent variables from the probability space of a statistical shape model. By mapping the output of the generator to a canonical coordinate frame through a differentiable geometric transformation, we enforce the geometry of the objects and add an implicit connection from the prior to the generated object. Experimental results on face generation indicate that the GAGAN can generate realistic images of faces with arbitrary facial attributes such as facial expression, pose, and morphology, that are of better quality than current GAN-based methods. Our method can be used to augment any existing GAN architecture and improve the quality of the images generated

    SEWA DB: A rich database for audio-visual emotion and sentiment research in the wild

    Get PDF
    Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust performance in-the-wild are more needed than ever as digital devices are becoming indispensable part of our life more and more. Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old. Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation

    Fast Newton active appearance models

    Get PDF
    Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to its efficiency, Gauss-Newton optimization has been the standard choice over more sophisticated approaches like Newton. In this paper, we show that the AAM problem has structure which can be used to solve efficiently the original Newton problem without any approximations. We then make connections to the original Gauss-Newton algorithm and study experimentally the effect of the additional terms introduced by the Newton formulation on both fitting accuracy and convergence. Based on our derivations, we also propose a combined Newton and Gauss-Newton method which achieves promising fitting and convergence performance. Our findings are validated on two challenging in-the-wild data sets. © 2014 IEEE

    Spectral learning on matrices and tensors

    Get PDF
    Spectral methods have been the mainstay in several domains such as machine learning, applied mathematics and scientific computing. They involve finding a certain kind of spectral decomposition to obtain basis functions that can capture important structures or directions for the problem at hand. The most common spectral method is the principal component analysis (PCA). It utilizes the principal components or the top eigenvectors of the data covariance matrix to carry out dimensionality reduction as one of its applications. This data pre-processing step is often effective in separating signal from noise. PCA and other spectral techniques applied to matrices have several limitations. By limiting to only pairwise moments, they are effectively making a Gaussian approximation on the underlying data. Hence, they fail on data with hidden variables which lead to non-Gaussianity. However, in almost any data set, there are latent effects that cannot be directly observed, e.g., topics in a document corpus, or underlying causes of a disease. By extending the spectral decomposition methods to higher order moments, we demonstrate the ability to learn a wide range of latent variable models efficiently. Higher-order moments can be represented by tensors, and intuitively, they can encode more information than just pairwise moment matrices. More crucially, tensor decomposition can pick up latent effects that are missed by matrix methods. For instance, tensor decomposition can uniquely identify non-orthogonal components. Exploiting these aspects turns out to be fruitful for provable unsupervised learning of a wide range of latent variable models. We also outline the computational techniques to design efficient tensor decomposition methods. They are embarrassingly parallel and thus scalable to large data sets. Whilst there exist many optimized linear algebra software packages, efficient tensor algebra packages are also beginning to be developed. We introduce Tensorly, which has a simple python interface for expressing tensor operations. It has a flexible back-end system supporting NumPy, PyTorch, TensorFlow and MXNet amongst others. This allows it to carry out multi-GPU and CPU operations, and can also be seamlessly integrated with deep-learning functionalities

    Fast Newton active appearance models

    No full text
    Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to its efficiency, Gauss-Newton optimization has been the standard choice over more sophisticated approaches like Newton. In this paper, we show that the AAM problem has structure which can be used to solve efficiently the original Newton problem without any approximations. We then make connections to the original Gauss-Newton algorithm and study experimentally the effect of the additional terms introduced by the Newton formulation on both fitting accuracy and convergence. Based on our derivations, we also propose a combined Newton and Gauss-Newton method which achieves promising fitting and convergence performance. Our findings are validated on two challenging in-the-wild data sets. © 2014 IEEE.</p

    Speech-driven facial animation using polynomial fusion of features

    Get PDF
    Speech-driven facial animation involves using a speech signal to generate realistic videos of talking faces. Recent deep learning approaches to facial synthesis rely on extracting low-dimensional representations and concatenating them, followed by a decoding step of the concatenated vector. This accounts for only first-order interactions of the features and ignores higher-order interactions. In this paper we propose a polynomial fusion layer that models the joint representation of the encodings by a higher-order polynomial, with the parameters modelled by a tensor decomposition. We demonstrate the the suitability of this approach through experiments on generated videos evaluated on a range of metrics on video quality, audiovisual synchronisation and generation of blinks
    corecore