29 research outputs found

    A blunted blood plasmacytoid dendritic cell response to an acute systemic viral infection is associated with increased disease severity

    No full text
    At least two distinct human dendritic cell (DC) subsets are produced in the bone marrow and circulate in the peripheral blood-precursor myeloid DCs (pre-mDCs) and plasmacytoid DCs (PDCs). Both lineages of DCs are instrumental in antiviral innate immunity and shaping Th1 adaptive immune responses. PDCs are the most potent IFN-alpha-producing cells to viral pathogens. Dengue, an acute flavivirus disease, provides a model to study DC responses to a self-limited human viral infection. We analyzed circulating DC subsets in a prospective study of children with dengue across a broad range of illness severities: healthy controls; mild, nondengue, presumed viral infections; moderately ill dengue fever; and, the most severe form of illness, dengue hemorrhagic fever. We also examined PDC responses in monkeys with asymptomatic dengue viremia and to dengue virus exposure in vitro. The absolute number and frequency of circulating pre-mDCs early in acute viral illness decreased as illness severity increased. Depressed pre-mDC blood levels appeared to be part of the typical innate immune response to acute viral infection. The frequency of circulating PDCs trended upward and the absolute number of circulating PDCs remained stable early in moderately ill children with dengue fever, mild other, nondengue, febrile illness, and monkeys with asymptomatic dengue viremia. However, there was an early decrease in circulating PDC levels in children who subsequently developed dengue hemorrhagic fever. A blunted blood PDC response to dengue virus infection was associated with higher viremia levels, and was part of an altered innate immune response and pathogenetic cascade leading to severe disease

    Superior protection in a relapsing Plasmodium cynomolgi rhesus macaque model by a chemoprophylaxis with sporozoite immunization regimen with atovaquone-proguanil followed by primaquine

    No full text
    Abstract Background To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. Methods The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. Results Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. Conclusions This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax

    Chemoprophylaxis with sporozoite immunization in P. knowlesi rhesus monkeys confers protection and elicits sporozoite-specific memory T cells in the liver.

    No full text
    Whole malaria sporozoite vaccine regimens are promising new strategies, and some candidates have demonstrated high rates of durable clinical protection associated with memory T cell responses. Little is known about the anatomical distribution of memory T cells following whole sporozoite vaccines, and immunization of nonhuman primates can be used as a relevant model for humans. We conducted a chemoprophylaxis with sporozoite (CPS) immunization in P. knowlesi rhesus monkeys and challenged via mosquito bites. Half of CPS immunized animals developed complete protection, with a marked delay in parasitemia demonstrated in the other half. Antibody responses to whole sporozoites, CSP, and AMA1, but not CelTOS were detected. Peripheral blood T cell responses to whole sporozoites, but not CSP and AMA1 peptides were observed. Unlike peripheral blood, there was a high frequency of sporozoite-specific memory T cells observed in the liver and bone marrow. Interestingly, sporozoite-specific CD4+ and CD8+ memory T cells in the liver highly expressed chemokine receptors CCR5 and CXCR6, both of which are known for liver sinusoid homing. The majority of liver sporozoite-specific memory T cells expressed CD69, a phenotypic marker of tissue-resident memory (TRM) cells, which are well positioned to rapidly control liver-stage infection. Vaccine strategies that aim to elicit large number of liver TRM cells may efficiently increase the efficacy and durability of response against pre-erythrocytic parasites

    Residual CQ levels and malaria patency post-challenge.

    No full text
    <p>(A) Plasma CQ levels dropped below the lower limit of quantification by day 7 following administration in animals in the immunized group (n = 4) and control group (n = 4). (B) Blood-stage <i>P</i>. <i>knowlesi</i> parasitemia measured by light microscopy following challenge from the bites of 5 infected mosquitoes at day 114. Animals who developed malaria patency were treated with artesunate and quinine dihydrochloride once parasitemia reached 0.2–2%.</p

    Evaluation of the Safety and Immunogenicity in Rhesus Monkeys of a Recombinant Malaria Vaccine for Plasmodium vivax with a Synthetic Toll-Like Receptor 4 Agonist Formulated in an Emulsion▿‡

    No full text
    Plasmodium vivax is the major cause of malaria outside sub-Saharan Africa and inflicts debilitating morbidity and consequent economic impacts in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of a novel chimeric recombinant protein, VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Very few adjuvant formulations are currently available for human use. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study rhesus monkeys were immunized intramuscularly three times with VMP001 in combination with a stable emulsion (SE) or a synthetic Toll-like receptor 4 (TLR4) agonist (glucopyranosyl lipid A [GLA]) in SE (GLA-SE). Sera and peripheral blood mononuclear cells (PBMCs) were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of monkeys generated high titers of anti-P. vivax IgG antibodies, as detected by enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. In addition, all groups generated a cellular immune response characterized by antigen-specific CD4+ T cells secreting predominantly interleukin-2 (IL-2) and lesser amounts of tumor necrosis factor (TNF). We conclude that the combination of VMP001 and GLA-SE is safe and immunogenic in monkeys and may serve as a potential second-generation vaccine candidate against P. vivax malaria
    corecore