34 research outputs found

    CELL SEPARATION AND GENE EXPRESSION ANALYSIS IN A TUMOR-STROMA INTERACTION MODEL

    Get PDF
    A novel technique for co-culturing and separating fibroblasts and carcinoma cells in a 2-D model of tumorstroma interaction is presented. The methodology is based on cell co-cultivation on an 1.35 μm thin membrane followed by rapid immunostaining and microdissection of the different cell compartments using a laser microdissection system (P.A.L.M. Microlaser Technologies AG, Germany). For identifying the tumor cell compartment, immunolabeling for a marker that is expressed only in epithelial tumor cells is performed. The RNA quality from the microdissected co-cultured cells was successfully proved by RT-PCR for a housekeeping gene transcript and for the laminin gamma 2 chain gene transcript used before in the tumor cell immunostaining. Laminin cDNA was amplificable only in tumor cells and not in the co-cultivated fibroblasts indicating no cell-cross-contamination during microdissection. Microdissected tumor and stroma cells from the presented membrane based co-culture model can be used for gene expression profiling and DNA based analysis in the investigation of tumor-stroma interactions

    No Incidence of BRAF Mutations in Salivary Gland Carcinomas—Implications for Anti-EGFR Therapies

    Get PDF
    BRAF is the main effector of KRAS in the RAS-RAF-MAPK axis, a signaling pathway downstream of EGFR. The activation of this cascade is an important pathway in cancer development and is considered a key pathway for therapeutic molecules. Recent studies in metastatic colorectal cancer found that an oncogenic activation of BRAF by a point mutation in exon 15 (V600E) could bypass the EGFR-initiated signaling cascade with the effect that patients bearing the mutant BRAF allele are not likely to benefit from EGFR-targeted therapies. We designed an allele-specific PCR and screened 65 salivary gland carcinoma (SGC) of the main histopathological types for the BRAF V600E mutation. All 65 SGC in this cohort (100%) presented the BRAF wildtype. In a previous study, we found a KRAS wildtype in 98.5% of SGC. These findings imply that SGC rarely acquires mutations that result in a constitutive activation of the signaling cascade downstream of EGFR and this pleads in favor of further therapeutic trials with EGFR-targeting monoclonal antibodies

    Glioblastoma cells express functional cell membrane receptors activated by daily used medical drugs

    Get PDF
    PURPOSE: Calcium ions are highly versatile spacial and temporal intracellular signals of non-excitable cells and have an important impact on nearly every aspect of cellular life controlling cell growth, metabolism, fluid secretion, information processing, transcription, apoptosis, and motility. Neurons and glia respond to stimuli, including neurotransmitters, neuromodulators, and hormones, which increase the intracellular calcium concentration. The function of intracellular calcium in gliomas is unknown. Lots of daily used drugs may act via receptors that can be linked to the intracellular calcium system and therefore could influence glioma biology. METHODS: Glioma cells were loaded with the calcium ion sensitive dye Fura 2-AM. Subsequently, cells were stimulated with 25 different medical drugs for 30 s. The increase of free intracellular calcium ions was measured and calculated by a microscope–camera–computer-unit. RESULTS: Except for the buffer solution HEPES that served as negative control and for the cortisol derivative dexamethasone, all other 24 tested drugs induced a rise of intracellular calcium ions. The cellular calcium responses were classified into seven functional groups. The tested substances activated several types of calcium channels and receptors. CONCLUSIONS: Our study impressively demonstrates that medical drugs are potent inducers of intracellular calcium signals. Totally unexpected, the results show a high amount of functional cellular receptors and channels on glioma cells, which could be responsible for certain biological effects like migration and cell growth. This calcium imaging study proves the usability of the calcium imaging as a screening system for functional receptors on human glioma cells

    Oral acantholytic squamous cell carcinoma shares clinical and histological features with angiosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>acantholytic squamous cell carcinomas (ASCC) and intraoral angiosarcoma share similar histopathological features. Aim of this study was to find marker for a clear distinction.</p> <p>Methods</p> <p>Four oral acantholytic squamous cell carcinomas and one intraoral angiosarcoma are used to compare the eruptive intraoral growth-pattern, age-peak, unfavourable prognosis and slit-like intratumorous spaces in common histological staining as identical clinical and histopathological features. Immunohistochemical staining for pancytokeratin, cytokeratin, collagen type IV, γ2-chain of laminin-5, endothelial differentiation marker CD31 and CD34, F VIII-associated antigen, Ki 67-antigen, β-catenin, E-cadherin, α-smooth-muscle-actin and Fli-1 were done.</p> <p>Results</p> <p>Cytokeratin-immunoreactive cells can be identified in both lesions. The large vascularization of ASCC complicates the interpretation of vascular differential markers being characteristic for angiosarcoma. Loss of cell-cell-adhesion, monitored by loss of E-cadherin and β-catenin membrane-staining, are indetified as reasons for massive expression of invasion-factor ln-5 in ASCC and considered responsible for unfavourable prognosis of ASCC. Expression of Fli-1 in angiosarcoma and cellular immunoreaction for ln-5 in ASCC are worked out as distinguishing features of both entities.</p> <p>Conclusion</p> <p>Fli-1 in angiosarcoma and ln-5 in ASCC are distinguishing features.</p

    LAMININ-5. A POTENTIAL TOOL IN DIAGNOSIS OF HEAD AND NECK SQUAMOUS CELL CARCINOMA

    No full text
    The heterotrimeric extracellular matrix protein laminin-5 (ln-5) is a regular constituent of the basement membrane in oral and pharyngeal mucosa consisting of the α 3, β 3 and γ 2 chain. On the one hand, it is an integral part of the epithelial adhesion complex which connects the hemidesmosomes of the basal cells with the basement membrane. In this position, ln-5 strictly acts against migration and invasion and may fundamentally contribute to the distinction between intraepithelial neoplasia vs. invasive carcinoma. On the other hand, single chains of ln-5, in particular the γ 2 chain, are able to promote migration. The immunohistochemical ln-5 demonstration outside the basement membrane in the keratinocyte cytoplasm or in the stroma of the invasive front, as well as ln-5 synthesis, indicate epithelial cells potentially able to migrate and to invade. The extent of the ln-5 demonstration outside the basement membrane, as well the loss of ln-5 from the basement membrane, is therefore of prognostic value.A diagnostic interpretation of ln-5 immunostainings has to consider the contrary functions of ln-5 or ln-5 fragments: within the basement membrane it acts as anchoring protein and outside the basement membrane it represents a migration/ invasion factor.</p
    corecore