2 research outputs found

    New Methods for ALK Status Diagnosis in Non–Small-Cell Lung Cancer: An Improved ALK Immunohistochemical Assay and a New, Brightfield, Dual ALK IHC–In Situ Hybridization Assay

    Get PDF
    Introduction:The demonstration of anaplastic lymphoma kinase (ALK) positivity in non–small-cell lung cancer (NSCLC) has been hindered by the technical complexity and interpretative challenges of fluorescence in situ hybridization methods for detection of ALK gene rearrangement and by the inadequate sensitivity of existing immunohistochemistry (IHC) methods for ALK protein detection. In this study, we sought to increase the sensitivity of ALK IHC detection and to develop a brightfield assay for concurrent detection of ALK protein expression and ALK gene rearrangement.Methods:We developed a horseradish peroxidase–based IHC detection system using the novel, nonendogenous hapten 3-hydroxy-2-quinoxaline (HQ) and tyramide. We also developed a dual gene protein ALK assay combining a brightfield break-apart in situ hybridization ALK assay with another sensitive IHC method using the novel, nonendogenous hapten 5-nitro-3-pyrazole. We examined the sensitivity and accuracy of these methods using surgically resected NSCLC cases examined with ALK fluorescence in situ hybridization.Results:The new HQ-tyramide IHC detection system offered readily interpretable staining with substantially greater sensitivity than conventional ALK IHC, and produced heterogeneous and homogeneous patterns of ALK protein staining among ALK-positive NSCLC surgical cases. The new 5-nitro-3-pyrazole–based IHC detection system was similar in ALK detection sensitivity to the HQ-tyramide IHC system and was compatible with the brightfield in situ hybridization assay.Conclusion:The new HQ-tyramide IHC reagent system allows more sensitive assessment of ALK protein status in NSCLC cases. The new ALK gene-protein assay allows the concurrent visualization of ALK gene and ALK protein status in single cells, allowing more accurate ALK status determination even in heterogeneous specimens

    Testing mutual exclusivity of ETS rearranged prostate cancer

    Get PDF
    Prostate cancer is a clinically heterogeneous and multifocal disease. More than 80% of patients with prostate cancer harbor multiple geographically discrete cancer foci at the time of diagnosis. Emerging data suggest that these foci are molecularly distinct consistent with the hypothesis that they arise as independent clones. One of the strongest arguments is the heterogeneity observed in the status of E26 transformation specific (ETS) rearrangements between discrete tumor foci. The clonal evolution of individual prostate cancer foci based on recent studies demonstrates intertumoral heterogeneity with intratumoral homogeneity. The issue of multifocality and interfocal heterogeneity is important and has not been fully elucidated due to lack of the systematic evaluation of ETS rearrangements in multiple tumor sites. The current study investigates the frequency of multiple gene rearrangements within the same focus and between different cancer foci. Fluorescence in situ hybridization (FISH) assays were designed to detect the four most common recurrent ETS gene rearrangements. In a cohort of 88 men with localized prostate cancer, we found ERG, ETV1, and ETV5 rearrangements in 51% (44/86), 6% (5/85), and 1% (1/86), respectively. None of the cases demonstrated ETV4 rearrangements. Mutual exclusiveness of ETS rearrangements was observed in the majority of cases; however, in six cases, we discovered multiple ETS or 5′ fusion partner rearrangements within the same tumor focus. In conclusion, we provide further evidence for prostate cancer tumor heterogeneity with the identification of multiple concurrent gene rearrangements
    corecore