109 research outputs found
Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems
We consider families of fast-slow skew product maps of the form
\begin{align*} x_{n+1} = x_n+\epsilon a(x_n,y_n,\epsilon), \quad y_{n+1} =
T_\epsilon y_n, \end{align*} where is a family of nonuniformly
expanding maps, and prove averaging and rates of averaging for the slow
variables as . Similar results are obtained also for
continuous time systems \begin{align*} \dot x = \epsilon a(x,y,\epsilon), \quad
\dot y = g_\epsilon(y). \end{align*} Our results include cases where the family
of fast dynamical systems consists of intermittent maps, unimodal maps (along
the Collet-Eckmann parameters) and Viana maps.Comment: Shortened version. First order averaging moved into a remark.
Explicit coupling argument moved into a separate not
Optimal control theory for unitary transformations
The dynamics of a quantum system driven by an external field is well
described by a unitary transformation generated by a time dependent
Hamiltonian. The inverse problem of finding the field that generates a specific
unitary transformation is the subject of study. The unitary transformation
which can represent an algorithm in a quantum computation is imposed on a
subset of quantum states embedded in a larger Hilbert space. Optimal control
theory (OCT) is used to solve the inversion problem irrespective of the initial
input state. A unified formalism, based on the Krotov method is developed
leading to a new scheme. The schemes are compared for the inversion of a
two-qubit Fourier transform using as registers the vibrational levels of the
electronic state of Na. Raman-like transitions through the
electronic state induce the transitions. Light fields are found
that are able to implement the Fourier transform within a picosecond time
scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond
pulse. Out of the schemes studied the square modulus scheme converges fastest.
A study of the implementation of the qubit Fourier transform in the Na
molecule was carried out for up to 5 qubits. The classical computation effort
required to obtain the algorithm with a given fidelity is estimated to scale
exponentially with the number of levels. The observed moderate scaling of the
pulse intensity with the number of qubits in the transformation is
rationalized.Comment: 32 pages, 6 figure
Performance of discrete heat engines and heat pumps in finite time
The performance in finite time of a discrete heat engine with internal
friction is analyzed. The working fluid of the engine is composed of an
ensemble of noninteracting two level systems. External work is applied by
changing the external field and thus the internal energy levels. The friction
induces a minimal cycle time. The power output of the engine is optimized with
respect to time allocation between the contact time with the hot and cold baths
as well as the adiabats. The engine's performance is also optimized with
respect to the external fields. By reversing the cycle of operation a heat pump
is constructed. The performance of the engine as a heat pump is also optimized.
By varying the time allocation between the adiabats and the contact time with
the reservoir a universal behavior can be identified. The optimal performance
of the engine when the cold bath is approaching absolute zero is studied. It is
found that the optimal cooling rate converges linearly to zero when the
temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure
Experimental Implementation of the Deutsch-Jozsa Algorithm for Three-Qubit Functions using Pure Coherent Molecular Superpositions
The Deutsch-Jozsa algorithm is experimentally demonstrated for three-qubit
functions using pure coherent superpositions of Li rovibrational
eigenstates. The function's character, either constant or balanced, is
evaluated by first imprinting the function, using a phase-shaped femtosecond
pulse, on a coherent superposition of the molecular states, and then projecting
the superposition onto an ionic final state, using a second femtosecond pulse
at a specific time delay
Control and manipulation of entanglement between two coupled qubits by fast pulses
We have investigated the analytical and numerical dynamics of entanglement
for two qubits that interact with each other via Heisenberg XXX-type
interaction and subject to local time-specific external kick and Gaussian
pulse-type magnetic fields in x-y plane. The qubits have been assumed to be
initially prepared in different pure separable and maximally entangled states
and the effect of the strength and the direction of external fast pulses on
concurrence has been investigated. The carefully designed kick or pulse
sequences are found to enable one to obtain constant long-lasting entanglement
with desired magnitude. Moreover, the time ordering effects are found to be
important in the creation and manipulation of entanglement by external fields.Comment: 18 pages, 6 figure
A Complete Set of Local Invariants for a Family of Multipartite Mixed States
We study the equivalence of quantum states under local unitary
transformations by using the singular value decomposition. A complete set of
invariants under local unitary transformations is presented for several classes
of tripartite mixed states in KxMxN composite systems. Two density matrices in
the same class are equivalent under local unitary transformations if and only
if all these invariants have equal values for these density matrices.Comment: 10 page
A novel method to compare protein structures using local descriptors
<p>Abstract</p> <p>Background</p> <p>Protein structure comparison is one of the most widely performed tasks in bioinformatics. However, currently used methods have problems with the so-called "difficult similarities", including considerable shifts and distortions of structure, sequential swaps and circular permutations. There is a demand for efficient and automated systems capable of overcoming these difficulties, which may lead to the discovery of previously unknown structural relationships.</p> <p>Results</p> <p>We present a novel method for protein structure comparison based on the formalism of local descriptors of protein structure - DEscriptor Defined Alignment (DEDAL). Local similarities identified by pairs of similar descriptors are extended into global structural alignments. We demonstrate the method's capability by aligning structures in difficult benchmark sets: curated alignments in the SISYPHUS database, as well as SISY and RIPC sets, including non-sequential and non-rigid-body alignments. On the most difficult RIPC set of sequence alignment pairs the method achieves an accuracy of 77% (the second best method tested achieves 60% accuracy).</p> <p>Conclusions</p> <p>DEDAL is fast enough to be used in whole proteome applications, and by lowering the threshold of detectable structure similarity it may shed additional light on molecular evolution processes. It is well suited to improving automatic classification of structure domains, helping analyze protein fold space, or to improving protein classification schemes. DEDAL is available online at <url>http://bioexploratorium.pl/EP/DEDAL</url>.</p
- …