2,461 research outputs found

    Magnetic phases of one-dimensional lattices with 2 to 4 fermions per site

    Full text link
    We study the spectral and magnetic properties of one-dimensional lattices filled with 2 to 4 fermions (with spin 1/2) per lattice site. We use a generalized Hubbard model that takes account all interactions on a lattice site, and solve the many-particle problem by exact diagonalization. We find an intriguing magnetic phase diagram which includes ferromagnetism, spin-one Heisenberg antiferromagnetism, and orbital antiferromagnetism.Comment: 8 pages, 6 figure

    Spin Density Matrix of Spin-3/2 Hole Systems

    Full text link
    For hole systems with an effective spin j=3/2, we present an invariant decomposition of the spin density matrix that can be interpreted as a multipole expansion. The charge density corresponds to the monopole moment and the spin polarization due to a magnetic field corresponds to a dipole moment while heavy hole-light hole splitting can be interpreted as a quadrupole moment. For quasi two-dimensional hole systems in the presence of an in-plane magnetic field B the spin polarization is a higher-order effect that is typically much smaller than one even if the minority spin subband is completely depopulated. On the other hand, the field B can induce a substantial octupole moment which is a unique feature of j=3/2 hole systems.Comment: 8 pages, 1 figure, 3 table

    Magnetism in one-dimensional quantum dot arrays

    Full text link
    We employ the density functional Kohn-Sham method in the local spin-density approximation to study the electronic structure and magnetism of quasi one-dimensional periodic arrays of few-electron quantum dots. At small values of the lattice constant, the single dots overlap, forming a non-magnetic quantum wire with nearly homogenous density. As the confinement perpendicular to the wire is increased, i.e. as the wire is squeezed to become more one-dimensional, it undergoes a spin-Peierls transition. Magnetism sets in as the quantum dots are placed further apart. It is determined by the electronic shell filling of the individual quantum dots. At larger values of the lattice constant, the band structure for odd numbers of electrons per dot indicates that the array could support spin-polarized transport and therefore act as a spin filter.Comment: 11 pages, 6 figure

    Order-disorder transition in nanoscopic semiconductor quantum rings

    Get PDF
    Using the path integral Monte Carlo technique we show that semiconductor quantum rings with up to six electrons exhibit a temperature, ring diameter, and particle number dependent transition between spin ordered and disordered Wigner crystals. Due to the small number of particles the transition extends over a broad temperature range and is clearly identifiable from the electron pair correlation functions.Comment: 4 pages, 5 figures, For recent information on physics of small systems see http://www.smallsystems.d

    Supermagnetosonic jets behind a collisionless quasi-parallel shock

    Full text link
    The downstream region of a collisionless quasi-parallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multi-spacecraft measurements of this type of supermagnetosonic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasi-parallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasi-parallel shocks in many plasma environments.Comment: accepted to Phys. Rev. Lett. (Nov 5, 2009

    The First Year IceCube-DeepCore Results

    Full text link
    The IceCube Neutrino Observatory includes a tightly spaced inner array in the deepest ice, called DeepCore, which gives access to low-energy neutrinos with a sizable surrounding cosmic ray muon veto. Designed to be sensitive to neutrinos at energies as low as 10 GeV, DeepCore will be used to study diverse physics topics with neutrino signatures, such as dark matter annihilations and atmospheric neutrino oscillations. The first year of DeepCore physics data-taking has been completed, and the first observation of atmospheric neutrino-induced cascades with IceCube and DeepCore are presented.Comment: 4 pages, 3 figures, TAUP 2011 (Journal of Physics: Conference Series (JCPS)

    On the formation of Wigner molecules in small quantum dots

    Full text link
    It was recently argued that in small quantum dots the electrons could crystallize at much higher densities than in the infinite two-dimensional electron gas. We compare predictions that the onset of spin polarization and the formation of Wigner molecules occurs at a density parameter rs≈4aB∗r_s\approx 4 a_B^* to the results of a straight-forward diagonalization of the Hamiltonian matrix

    Spectral properties of rotating electrons in quantum dots and their relation to quantum Hall liquids

    Full text link
    The exact diagonalization technique is used to study many-particle properties of interacting electrons with spin, confined in a two-dimensional harmonic potential. The single-particle basis is limited to the lowest Landau level. The results are analyzed as a function of the total angular momentum of the system. Only at angular momenta corresponding to the filling factors 1, 1/3, 1/5 etc. the system is fully polarized. The lowest energy states exhibit spin-waves, domains, and localization, depending on the angular momentum. Vortices exist only at excited polarized states. The high angular momentum limit shows localization of electrons and separation of the charge and spin excitations.Comment: 14 pages 18 figure
    • …
    corecore