60 research outputs found

    Theoretical investigation of magnetic order in ReOFeAs, Re = Ce, Pr

    Full text link
    Density functional theory (DFT) calculations are carried out on ReOFeAs, Re = Ce, Pr, the parent compounds of the high-Tc_c superconductors ReO1x_{1-x}Fx_{x}FeAs, in order to determine the magnetic order of the ground state. It is found that the magnetic moments on the Fe sites adopt a collinear antiferromagnetic order, similar to the case of LaOFeAs. Within the generalized gradient approximation along with Coulomb onsite repulsion (GGA+U), we show that the Re magnetic moments also adopt an antiferromagnetic order for which, within the ReO layer, same spin Re sites lie along a zigzag line perpendicular to the Fe spin stripes. While within GGA the Re 4f band crosses the Fermi level, upon inclusion of onsite Coulomb interaction the 4f band splits and moves away from the Fermi level, making ReOFeAs a Mott insulator.Comment: 5 pages, 4 figure

    Crystal-field effects in the first-order valence transition in YbInCu4 induced by an external magnetic field

    Full text link
    As it was shown earlier [Dzero, Gor'kov, and Zvezdin, J. Phys.:Condens. Matter 12, L711 (2000)] the properties of the first-order valence phase transition in YbInCu4 in the wide range of magnetic fields and temperatures are perfectly described in terms of a simple entropy transition for free Yb ions. Within this approach, the crystal field effects have been taken into account and we show that the phase diagram in the BTB-T plane acquires some anisotropy with respect to the direction of an external magnetic field.Comment: 4 pages, 3 eps figures; minor changes; to be piblished in J. of Physics: Cond. Ma

    Physics of Polymorphic Transitions in CeRuSn

    Full text link
    We report a detailed study of the polymorphic transitions in ternary stannide CeRuSn on high quality single crystals through a combination of X-ray diffraction experiments conducted at 300, 275 and 120 K, and measurements of the thermal expansion, magnetization, and resistivity, along main crystallographic axes. In addition, the transition was followed as a function of pressure up to 0.8 GPa. The present X-ray diffraction data show that the room temperature polymorph consists of the lattice doubled along the c axis with respect to the CeCoAl-type structure consistent with previous reports. Upon cooling, the compound undergoes two successive transitions, first to a quintuple (290 K) and than to a triple CeCoAl superstructure at 225 K. The transitions are accompanied by a tremendous volume change due to a strong shrinking of the lattice along the c axis, which is clearly observed in thermal expansion. We advance arguments that the volume collapse originates from an increasing number of crystallographically inequivalent Ce sites and the change of ratio between the short and long Ce-Ru bonds. The observed properties of the polymorphic transition in CeRuSn are reminiscent of the transition in elementary Cerium, suggesting that similar physics, i.e., a Kondo influenced transition and strong lattice vibrations might be the driving forces

    First order valence transition in YbInCu_4 in the (B,T) - plane

    Full text link
    The puzzling properties of the first order phase transition in YbInCu4_4 and its alloys in the wide range of magnetic fields and temperatures are perfectly described in terms of a simple entropy transition for free Yb ions. In particular, it turns out that the transition line in the (B,T)(B,T)-plane is very close to the elliptic shape, as it has been observed experimentally. Similar calculations are done, and the experiments are proposed for the (γα)(\gamma{-}\alpha) phase transition in Ce in Megagauss fields. We speculate, that in case of YbInCu4_4 the first order transition is a Mott transition between a higher temperature phase in which localized moments are stabilized by the entropy terms in the free energy, and a band-like non-magnetic ground state of the ff-electrons.Comment: RevTeX, 5 pages, 2 figure

    Low-lying energy spectrum of the cerium dimer

    Full text link
    The electronic structure of Ce2 is studied in a valence bond model with two 4f electrons localized at two cerium sites. It is shown that the low-lying energy spectrum of the simplest cerium chemical bond is determined by peculiarities of the occupied 4f states. The model allows for an analytical solution which is discussed along with the numerical analysis. The energy spectrum is a result of the interplay between the 4f valence bond exchange, the 4f Coulomb repulsion and the spin-orbit coupling. The calculated ground state is the even \Omega=\Lambda=\Sigma=0 level, the lowest excitations situated at 30 K are the odd \Omega=\Lambda=\Sigma=0 state and the 365^{3} 6_5 doublet (\Omega=\pm5,\, \Lambda=\pm6,\, \Sigma=\mp1). The calculated magnetic susceptibility displays different behavior at high and low temperatures. In the absence of the spin-orbit coupling the ground state is the 3Σg{}^3 \Sigma_g^- triplet. The results are compared with other many-electron calculations and experimental data.Comment: 10 pages, 3 figures, 5 Tables, 18 Reference

    A robust but disordered collapsed-volume phase in a cerium alloy under the application of pulsed magnetic fields

    Full text link
    We report synchrotron x-ray powder diffraction measurements of Ce0.8La0.1Th0.1 subject to pulsed magnetic fields as high as 28 Tesla. This alloy is known to exhibit a continuous volume collapse on cooling at ambient pressure, which is a modification of the gamma -> alpha transition in elemental cerium. Recently, it has been suggested on the basis of field-cooled resistivity and pulsed field magnetization measurements that the volume collapse in this alloy can be suppressed by the application of magnetic fields. Conversely, our direct diffraction measurements show a robust collapsed phase, which persists in magnetic fields as high as 28 Tesla. We also observe nanoscale disorder in the collapsed phase, which increasingly contaminates the high temperature phase on thermal cycling.Comment: 6 pages, 6 figures, submitted to PR

    Superconductivity emerging near quantum critical point of valence transition

    Full text link
    The nature of the quantum valence transition is studied in the one-dimensional periodic Anderson model with Coulomb repulsion between f and conduction electrons by the density-matrix renormalization group method. It is found that the first-order valence transition emerges with the quantum critical point and the crossover from the Kondo to the mixed-valence states is strongly stabilized by quantum fluctuation and electron correlation. It is found that the superconducting correlation is developed in the Kondo regime near the sharp valence increase. The origin of the superconductivity is ascribed to the development of the coherent motion of electrons with enhanced valence fluctuation, which results in the enhancement of the charge velocity, but not of the charge compressibility. Statements on the valence transition in connection with Ce metal and Ce compounds are given.Comment: 9 pages, 4 figure

    The Structure of Barium in the hcp Phase Under High Pressure

    Full text link
    Recent experimental results on two hcp phases of barium under high pressure show interesting variation of the lattice parameters. They are here interpreted in terms of electronic structure calculation by using the LMTO method and generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II the dramatic drop in c/a is an instability analogous to that in the group II metals but with the transfer of s to d electrons playing a crucial role in Ba. Meanwhile in phase V, the instability decrease a lot due to the core repulsion at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx, 71.15LaComment: 29 pages, 8 figure

    Tricritical Phenomena at the Cerium γα\gamma \to \alpha Transition

    Full text link
    The γα\gamma \to \alpha isostructural transition in the Ce0.9x_{0.9-x}Lax_xTh0.1_{0.1} system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity/striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to zero with increasing La doping and the transition changes from being first-order to continuous at a critical concentration 0.10xc0.140.10 \leq x_c \leq 0.14. At the tricritical point, the coefficient of the linear TT term in the specific heat γ\gamma and the magnetic susceptibility start to increase rapidly near xx = 0.14 and gradually approaches large values at xx=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. Near xcx_c, the Wilson ratio, RWR_W, has a value of 3.0, signifying the presence of magnetic fluctuations. Also, the low-temperature resistivity shows that the character of the low-temperature Fermi-liquid is changing

    High field x-ray diffraction study on a magnetic-field-induced valence transition in YbInCu4

    Full text link
    We report the first high-field x-ray diffraction experiment using synchrotron x-rays and pulsed magnetic fields exceeding 30 T. Lattice deformation due to a magnetic-field-induced valence transition in YbInCu4 is studied. It has been found that the Bragg reflection profile at 32 K changes significantly at around 27 T due to the structural transition. In the vicinity of the transition field the low-field and the high-field phases are observed simultaneously as the two distinct Bragg reflection peaks: This is a direct evidence of the fact that the field-induced valence state transition is the first order phase transition. The field-dependence of the low-field-phase Bragg peak intensity is found to be scaled with the magnetization.Comment: 5 pages, 6 figures, submitted to J. Phys. Soc. Jp
    corecore