5 research outputs found

    Factor analysis for construct validity of a trunk impairment scale in Parkinson’s disease: a cross-sectional study

    Get PDF
    ObjectivesTo investigate the construct validity of the Trunk Impairment Scale (TIS), which was developed to assess trunk impairment in patients with stroke, in patients with Parkinson’s disease (PD).DesignThis retrospective, cross-sectional study enrolled consecutive PD inpatients. Correlation analysis was performed to clarify whether the TIS assessment was related to other balance functions, lower extremity muscle strength, or walking ability. Factor analysis was performed to see how the background factors of TIS differ from balance function, lower limb muscle strength, and walking ability.ResultsExamining the data of 471 patients with PD, there were relationships between TIS and the Mini-Balance Evaluation Systems Test (r = 0.67), Barthel Index (r = 0.57), general lower limb extension torque (r = 0.51), two-minute walk test (r = 0.54), Hoehn and Yahr stage (r = −0.61), and Movement Disorder Society Unified Parkinson’s Disease Rating Scale part III total points (r = −0.59). Factor analysis showed that TIS items were divided into three factors (an abdominal muscles and righting reflex component; a perception and verticality component; and a rotational component), differing from other scales that included clinical assessment items.ConclusionThe TIS can be useful for assessing the underlying trunk impairment as a basis for activities of daily living, gait function, and balance ability in patients with PD

    Pelvic Rotation Angles of Stroke Patients in the Sitting and Standing Positions

    No full text

    Pelvis-Toe Distance: 3-Dimensional Gait Characteristics of Functional Limb Shortening in Hemiparetic Stroke

    No full text
    We aimed to investigate whether a newly defined distance in the lower limb can capture the characteristics of hemiplegic gait compared to healthy controls. Three-dimensional gait analyses were performed on 42 patients with chronic stroke and 10 age-matched controls. Pelvis-toe distance (PTD) was calculated as the absolute distance between an anterior superior iliac spine marker and a toe marker during gait normalized by PTD in the bipedal stance. The shortening peak during the swing phase was then quantified as PTDmin. The sagittal clearance angle, the frontal compensatory angle, gait speed, and the observational gait scale were also collected. PTDmin in the stroke group showed less shortening on the affected side and excessive shortening on the non-affected side compared to controls. PTDmin on the affected side correlated negatively with the sagittal clearance peak angle and positively with the frontal compensatory peak angle in the stroke group. PTDmin in stroke patients showed moderate to high correlations with gait speed and observational gait scale. PTDmin adequately reflected gait quality without being affected by apparent improvements due to frontal compensatory patterns. Our results showed that various impairments and compensations were included in the inability to shorten PTD, which can provide new perspectives on gait rehabilitation in stroke patients

    Robotized Knee-Ankle-Foot Orthosis-Assisted Gait Training on Genu Recurvatum during Gait in Patients with Chronic Stroke: A Feasibility Study and Case Report

    No full text
    Genu recurvatum (knee hyperextension) is a common problem after stroke. It is important to promote the coordination between knee and ankle movements during gait; however, no study has investigated how multi-joint assistance affects genu recurvatum. We are developing a gait training technique that uses robotized knee-ankle-foot orthosis (KAFO) to assists the knee and ankle joints simultaneously. This report aimed to investigate the safety of robotized KAFO-assisted gait training (Experiment 1) and a clinical trial to treat genu recurvatum in a patient with stroke (Experiment 2). Six healthy participants and eight patients with chronic stroke participated in Experiment 1. They received robotized KAFO-assisted gait training for one or 10 sessions. One patient with chronic stroke participated in Experiment 2 to investigate the effect of robotized KAFO-assisted gait training on genu recurvatum. The patient received the training for 30 min/day for nine days. The robot consisted of KAFO and an attached actuator of four pneumatic artificial muscles. The assistance parameters were adjusted by therapists to prevent genu recurvatum during gait. In Experiment 2, we evaluated the knee joint angle during overground gait, Fugl-Meyer Assessment of lower extremity (FMA-LE), modified Ashworth scale (MAS), Gait Assessment and Intervention Tool (G.A.I.T.), 10-m gait speed test, and 6-min walk test (6MWT) before and after the intervention without the robot. All participants completed the training in both experiments safely. In Experiment 2, genu recurvatum, FMA-LE, MAS, G.A.I.T., and 6MWT improved after robotized KAFO-assisted gait training. The results indicated that the multi-joint assistance robot may be effective for genu recurvatum after stroke
    corecore