327 research outputs found

    Radiation Due to Josephson Oscillations in Layered Superconductors

    Full text link
    We derive the power of direct radiation into free space induced by Josephson oscillations in intrinsic Josephson junctions of highly anisotropic layered superconductors. We consider the super-radiation regime for a crystal cut in the form of a thin slice parallel to the c-axis. We find that the radiation correction to the current-voltage characteristic in this regime depends only on crystal shape. We show that at large enough number of junctions oscillations are synchronized providing high radiation power and efficiency in the THz frequency range. We discuss crystal parameters and bias current optimal for radiation power and crystal cooling.Comment: 4 pages, 1 figure, to be published in Phys. Rev. Let

    Josephson Coupling, Phase Correlations, and Josephson Plasma Resonance in Vortex Liquid Phase

    Full text link
    Josephson plasma resonance has been introduced recently as a powerful tool to probe interlayer Josephson coupling in different regions of the vortex phase diagram in layered superconductors. In the liquid phase, the high temperature expansion with respect to the Josephson coupling connects the Josephson plasma frequency with the phase correlation function. This function, in turn, is directly related to the pair distribution function of the liquid. We develop a recipe to extract the phase and density correlation functions from the dependencies of the plasma resonance frequency ωp(B)\omega_p({\bf B}) and the cc axis conductivity σc(B)\sigma_c({\bf B}) on the {\it ab}-component of the magnetic field at fixed {\it c} -component. Using Langevin dynamic simulations of two-dimensional vortex arrays we calculate density and phase correlation functions at different temperatures. Calculated phase correlations describe very well the experimental angular dependence of the plasma resonance field. We also demonstrate that in the case of weak damping in the liquid phase, broadening of the JPR line is caused mainly by random Josephson coupling arising from the density fluctuations of pancake vortices. In this case the JPR line has a universal shape, which is determined only by parameters of the superconductors and temperature.Comment: 22 pages, 6 figures, to appear in Phys. Rev. B, December

    Abrupt Change of Josephson Plasma Frequency at the Phase Boundary of the Bragg Glass in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report the first detailed and quantitative study of the Josephson coupling energy in the vortex liquid, Bragg glass and vortex glass phases of Bi_2Sr_2CaCu_2O_{8+\delta} by the Josephson plasma resonance. The measurements revealed distinct features in the T- and H-dependencies of the plasma frequency ωpl\omega_{pl} for each of these three vortex phases. When going across either the Bragg-to-vortex glass or the Bragg-to-liquid transition line, ωpl\omega_{pl} shows a dramatic change. We provide a quantitative discussion on the properties of these phase transitions, including the first order nature of the Bragg-to-vortex glass transition.Comment: 5pages, 4figure

    Vortex shear effects in layered superconductors

    Full text link
    Motivated by recent transport and magnetization measurements in BSCCO samples [B. Khaykovich et. al., Phys. Rev. B 61, R9261 (2000)], we present a simple macroscopic model describing effects of inhomogeneous current distribution and shear in a layered superconductor. Parameters of the model are deduced from a microscopic calculation. Our model accounts for the strong current non-linearities and the re-entrant temperature dependence observed in the experiment.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Evidence for LineLike Vortex Liquid Phase in Tl2_2Ba2_2CaCu2_2O8_8 Probed by the Josephson Plasma Resonance

    Full text link
    We measured the Josephson plasma resonance (JPR) in optimally doped Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films using terahertz time-domain spectroscopy in transmission. The temperature and magnetic field dependence of the JPR frequency shows that the c-axis correlations of pancake vortices remain intact at the transition from the vortex solid to the liquid phase. In this respect Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} films, withanisotropy parameter γ150\gamma\approx 150, are similar to the less anisotropic YBa2_2Cu3_3O7δ_{7-\delta} (γ8)(\gamma\approx 8) rather than to the most anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals γ500\gamma\geq 500).Comment: Submitted to Physical Review Letter

    Josephson Plasma Resonance as a Structural Probe of Vortex Liquid

    Full text link
    Recent developments of the Josephson plasma resonance and transport c-axis measurements in layered high Tc_{c} superconductors allow to probe Josephson coupling in a wide range of the vortex phase diagram. We derive a relation between the field dependent Josephson coupling energy and the density correlation function of the vortex liquid. This relation provides a unique opportunity to extract the density correlation function of pancake vortices from the dependence of the plasma resonance on the abab-component of the magnetic field at a fixed cc-axis component.Comment: 4 pages, 1 fugure, accepted to Phys. Rev. Let

    On bouncing solutions in non-local gravity

    Full text link
    A non-local modified gravity model with an analytic function of the d'Alembert operator is considered. This model has been recently proposed as a possible way of resolving the singularities problem in cosmology. We present an exact bouncing solution, which is simpler compared to the already known one in this model in the sense it does not require an additional matter to satisfy all the gravitational equations.Comment: 5 pages; v2: matching the jounral versio

    Structure of vortex liquid phase in irradiated BSCCO(2212) crystals

    Full text link
    The c-axis resistivity in irradiated and in pristine BSCCO(2212) crystals is measured as a function of the in-plane magnetic field component at fixed out-of-plane component B_\perp in the vortex liquid phase at T=67 K. From this data we extract the dependence of the phase difference correlation length inside layers on B_\perp and estimate the average length of pieces of vortex lines confined inside columnar defects as a function of the filling factor f=B_\perp / B_\phi. The maximum length, about 15 interlayer distances, is reached near f=0.35.Comment: 4 pages, 4 figure

    Numerical and experimental studies of the carbon etching in EUV-induced plasma

    Get PDF
    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By relating the computed ion fluxes to the experimentally observed etching rate at various pressures and ion energies, we show that at low pressure and energy, carbon etching is due to chemical sputtering, while at high pressure and energy a reactive ion etching process is likely to dominate

    Mechanism of thermally activated c-axis dissipation in layered High-Tc_c superconductors at high fields

    Full text link
    We propose a simple model which explains experimental behavior of cc-axis resistivity in layered High-Tc_c superconductors at high fields in a limited temperature range. It is generally accepted that the in-plane dissipation at low temperatures is caused by small concentration of mobile pancake vortices whose diffusive motion is thermally activated. We demonstrate that in such situation a finite conductivity appears also in cc-direction due to the phase slips between the planes caused by the mobile pancakes. The model gives universal relation between the components of conductivity which is in good agreement with experimental data.Comment: RevTeX, 4 pages, 2 Postscript figure
    corecore