521 research outputs found

    Magnetic oscillations of critical current in intrinsic Josephson-junction stacks

    Full text link
    A key phenomenon related to the Josephson effect is oscillations of different properties of superconducting tunneling junctions with magnetic field. We consider magnetic oscillations of the critical current in stacks of intrinsic Josephson junctions, which are realized in mesas fabricated from layered high-temperature superconductors. The oscillation behavior is very different from the case of a single junction. Depending on the stack lateral size, oscillations may have either the period of half flux quantum per junction (wide-stack regime) or one flux quantum per junction (narrow-stack regime). We study in detail the crossover between these two regimes. Typical size separating the regimes is proportional to magnetic field meaning that the crossover can be driven by the magnetic field. In the narrow-stack regime the lattice structure experiences periodic series of phase transitions between aligned rectangular configuration and triangular configuration. Triangular configurations in this regime is realized only in narrow regions near magnetic-field values corresponding to integer number of flux quanta per junction.Comment: 17 pages, 11 figures, subm. Phys. Rev.

    Cosmological Signature of Tachyon Condensation

    Full text link
    We consider the dynamics of the open string tachyon condensation in a framework of the cubic fermionic String Field Theory including a non-minimal coupling with closed string massless modes, the graviton and the dilaton. Coupling of the open string tachyon and the dilaton is motivated by the open String Field Theory in a linear dilaton background and the flat space-time. We note that the dilaton gravity provides several restrictions on the tachyon condensation and show explicitly that the influence of the dilaton on the tachyon condensation is essential and provides a significant effect: oscillations of the Hubble parameter and the state parameter become of a cosmological scale. We give an estimation for the period of these oscillations (0.1-1) Gyr and note a good agreement of this period with the observed oscillations with a period (0.15-0.65) Gyr in a distribution of quasar spectra.Comment: 19 pages, JHEP3 class; v2: presentation in Section 3 improve

    Stability of dynamic coherent states in intrinsic Josephson-junction stacks near internal cavity resonance

    Full text link
    Stacks of intrinsic Josephson junctions in the resistive state can by efficiently synchronized by the internal cavity mode resonantly excited by the Josephson oscillations. We study the stability of dynamic coherent states near the resonance with respect to small perturbations. Three states are considered: the homogeneous and alternating-kink states in zero magnetic field and the homogeneous state in the magnetic field near the value corresponding to half flux quantum per junction. We found two possible instabilities related to the short-scale and long-scale perturbations. The homogeneous state in modulated junction is typically unstable with respect to the short-scale alternating phase deformations unless the Josephson current is completely suppressed in one half of the stack. The kink state is stable with respect to such deformations and homogeneous state in the magnetic field is only stable within a certain range of frequencies and fields. Stability with respect to the long-range deformations is controlled by resonance excitations of fast modes at finite wave vectors and typically leads to unstable range of the wave-vectors. This range shrinks with approaching the resonance and increasing the in-plane dissipation. As a consequence, in finite-height stacks the stability frequency range near the resonance increases with decreasing the height.Comment: 15 pages, 8 figures, to appear in Phys. Rev.

    Tilted and crossing vortex chains in layered superconductors

    Full text link
    In the presence of the Josephson vortex lattice in layered superconductors, a small c-axis magnetic field penetrates in the form of vortex chains. In general, the structure of a single chain is determined by the ratio of the London [λ\lambda] and Josephson [λJ\lambda_{J}] lengths, α=λ/λJ\alpha= \lambda/\lambda_{J}. The chain is composed of tilted vortices at large α\alpha's (tilted chain) and at small α\alpha's it consists of a crossing array of Josephson vortices and pancake-vortex stacks (crossing chain). We study chain structures at intermediate α\alpha's and found two types of phase transitions. For α≲0.6\alpha\lesssim 0.6 the ground state is given by the crossing chain in a wide range of pancake separations a≳[2−3]λJa\gtrsim [2-3]\lambda_J. However, due to attractive coupling between deformed pancake stacks, the equilibrium separation can not exceed some maximum value depending on the in-plane field and α\alpha. The first phase transition takes place with decreasing pancake-stack separation aa at a=[1−2]λJa=[1-2]\lambda_{J}, and rather wide range of the ratio α\alpha, 0.4≲α≲0.650.4 \lesssim \alpha\lesssim 0.65. With decreasing aa, the crossing chain goes through intermediate strongly-deformed configurations and smoothly transforms into a tilted chain via a second-order phase transition. Another phase transition occurs at very small densities of pancake vortices, a∼[20−30]λJa\sim [20-30]\lambda_J, and only when α\alpha exceeds a certain critical value ∼0.5\sim 0.5. In this case a small c-axis field penetrates in the form of kinks. However, at very small concentration of kinks, the kinked chains are replaced with strongly deformed crossing chains via a first-order phase transition. This transition is accompanied by a very large jump in the pancake density.Comment: Proceeding of the NATO ARW "Vortex dynamics in superconductors and other complex systems", Yalta, Crimea, Ukraine, 13-17 September 2004, To be published in the Journ. of Low Temp. Phys., 16 pages, 6 figure

    Electrodynamics of Josephson vortex lattice in high-temperature superconductors

    Full text link
    We studied response of the Josephson vortex lattice in layered superconductors to the high-frequency c-axis electric field. We found a simple relation connecting the dynamic dielectric constant with the perturbation of the superconducting phase, induced by oscillating electric field. Numerically solving equations for the oscillating phases, we computed the frequency dependences of the loss function at different magnetic fields, including regions of both dilute and dense Josephson vortex lattices. The overall behavior is mainly determined by the c-axis and in-plane dissipation parameters, which is inversely proportional to the anisotropy. The cases of weak and strong dissipation are realized in Bi2Sr2CaCu2Ox\mathrm{Bi_{2}Sr_{2}CaCu_{2}O_{x}} and underdoped YBa2Cu3Ox\mathrm{YBa_{2}Cu_{3} O_{x}} correspondingly. The main feature of the response is the Josephson-plasma-resonance peak. In the weak-dissipation case additional satellites appear in the dilute regime mostly in the higher-frequency region due to excitation of the plasma modes with the wave vectors set by the lattice structure. In the dense-lattice limit the plasma peak moves to higher frequency and its intensity rapidly decreases, in agreement with experiment and analytical theory. Behavior of the loss function at low frequencies is well described by the phenomenological theory of vortex oscillations. In the case of very strong in-plane dissipation an additional peak in the loss function appears below the plasma frequency. Such peak has been observed experimentally in underdoped YBa2Cu3Ox\mathrm{YBa_{2}Cu_{3} O_{x}}. It is caused by frequency dependence of in-plane contribution to losses rather then a definite mode of phase oscillations.Comment: 10 pages, 7 figures, to be published in Phys.Rev.B, supplementary animations of oscillating local electric field can be found at http://mti.msd.anl.gov/homepages/koshelev/projects/JPRinJVL/Nz2vc0_32vab6_0Anim.ht

    Vortex-chain phases in layered superconductors

    Full text link
    Layered superconductors in tilted magnetic field have a very rich spectrum of vortex lattice configurations. In the presence of in-plane magnetic field, a small c-axis field penetrates in the form of isolated vortex chains. The structure of a single chain is mainly determined by the ratio of the London [λ\lambda] and Josephson [λJ\lambda_{J}] lengths, α=λ/λJ\alpha= \lambda/\lambda_{J}. At large α\alpha the chain is composed of tilted vortices [tilted chains] and at small α\alpha it consists of a crossing array of Josephson vortices and pancake stacks [crossing chains]. We studied the chain structures at intermediate α\alpha's and found two types of behavior. (I) In the range 0.4<α<0.50.4 < \alpha < 0.5 a c-axis field first penetrates in the form of pancake-stack chains located on Josephson vortices. Due to attractive coupling between deformed stacks, their density jumps from zero to a finite value. With further increase of the c-axis field the chain structure smoothly evolves into modulated tilted vortices and then transforms via a second-order phase transition, into the tilted straight vortices. (II) In the range 0.5<α<0.650.5 < \alpha < 0.65 a c-axis field first penetrates in the form of kinks creating kinked tilted vortices. With increasing the c-axis field this structure is replaced via a first-order phase transition by the strongly deformed crossing chain. This transition is accompanied by a large jump of pancake density. Further evolution of the chain structure is similar to the higher anisotropy scenario: it smoothly transforms back into the tilted straight vortices.Comment: Accepted to Phys. Rev. B, 20 pages 12 figures, animation of chain structure is available in http://mti.msd.anl.gov/movies/Chains/Nl8al06Im.gif (gif, 441 KB
    • …
    corecore