154 research outputs found

    Explanation of Sextupole Instability in CERN PS Booster

    Get PDF
    Dual harmonic RF systems have been discussed for many years: to promote Landau damping, to reduce transverse space-charge, and to improve Touschek lifetime. Since its introduction into the CPS booster in 1982, the dual harmonic acceleration process suffered from an unexplained longitudinal instability occurring when the 2nd harmonic cavity is anti-phased and controlled by the 1st harmonic gap signa l. The instability does not occur when the beam fundamental is used as reference, nor when the RF harmonics are in-phase. The impetus for the present study arises from the conversion from harmonic num bers h=5 and 10 to h=1 and 2 for LHC operation. The instability has recently been diagnosed as a sextupole mode. In this paper, which is a synopsis of two laboratory notes [3,4], are presented experim ental results from machine development (MD) periods, and a detailed theoretical explanation for the instability (and its correction) that considers feedback from the beam versus the cavity fundamental

    New technique for bunch shape flattening

    Get PDF
    A technique for increasing the bunching factor (Bf) is described. Typically in booster-type synchrotrons, it is important to reduce the transverse space-charge tune shift. One means to achieve this is to increase the ratio of average to peak longitudinal charge density. Essentially, the idea is to create hollow bunches by sweeping high-harmonic empty buckets into the particle beam prior to bunching and acceleration. Successful beam experiments are reported with supporting LONG1D simulation studies performed on the CERN PS Booster for both single and dual rf cases. The longitudinally hollow bunches also benefit the receiving ring during the double batch transfer where half of the PS has to wait 1.2 seconds at low energy for the second injection. A 15th harmonic rf system was used to form the empty buckets. Simulations show that for the single harmonic case, Bf is increased from 0.28 to 0.38, and for the dual harmonic one, Bf is increased from 0.45 to 0.55 (values at 100 MeV). The flattening technique has been tested successfully with the first harmonic to 1 GeV and to 100 MeV for dual harmonic acceleration

    Beam Dynamics in High Intensity Cyclotrons Including Neighboring Bunch Effects: Model, Implementation and Application

    Full text link
    Space charge effects, being one of the most significant collective effects, play an important role in high intensity cyclotrons. However, for cyclotrons with small turn separation, other existing effects are of equal importance. Interactions of radially neighboring bunches are also present, but their combined effects has not yet been investigated in any great detail. In this paper, a new particle in cell based self-consistent numerical simulation model is presented for the first time. The model covers neighboring bunch effects and is implemented in the three-dimensional object-oriented parallel code OPAL-cycl, a flavor of the OPAL framework. We discuss this model together with its implementation and validation. Simulation results are presented from the PSI 590 MeV Ring Cyclotron in the context of the ongoing high intensity upgrade program, which aims to provide a beam power of 1.8 MW (CW) at the target destination

    A Cost-Effective Design for a Neutrino Factory

    Get PDF
    There have been active efforts in the U.S., Europe, and Japan on the design of a Neutrino Factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high energy storage ring. In the U.S., a second detailed Feasibility Study (FS2) for a Neutrino Factory was completed in 2001. Since that report was published, new ideas in bunching, cooling and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as Study 2B (ST2B), that should lead to significant cost savings over the FS2 design.Comment: 46 pages, 38 figures; to be submitted to Physical Review Special Topics: Accelerators and Beam

    Simulation Study of the Magnetized Electron Beam

    Get PDF
    Electron cooling of the ion beam plays an important role in electron ion colliders to obtain the required high luminosity. This cooling efficiency can be enhanced by using a magnetized electron beam, where the cooling process occurs inside a solenoid field. This paper compares the predictions of ASTRA and GPT simulations to measurements made using a DC high voltage photogun producing magnetized electron beam, related to beam size and rotation angles as a function of the photogun magnetizing solenoid and other parameters

    300 kV DC High Voltage Photogun With Inverted Insulator Geometry and CsKâ‚‚sb Photocathode

    Get PDF
    A compact DC high voltage photogun with inverted-insulator geometry was designed, built and operated reliably at 300 kV bias voltage using alkali-antimonide photocathodes. This presentation describes key electrostatic design features of the photogun with accompanying emittance measurements obtained across the entire photocathode surface that speak to field non-uniformity within the cathode/anode gap. A summary of initial photocathode lifetime measurements at beam currents up to 4.5 mA is also presented
    • …
    corecore