154 research outputs found
Explanation of Sextupole Instability in CERN PS Booster
Dual harmonic RF systems have been discussed for many years: to promote Landau damping, to reduce transverse space-charge, and to improve Touschek lifetime. Since its introduction into the CPS booster in 1982, the dual harmonic acceleration process suffered from an unexplained longitudinal instability occurring when the 2nd harmonic cavity is anti-phased and controlled by the 1st harmonic gap signa l. The instability does not occur when the beam fundamental is used as reference, nor when the RF harmonics are in-phase. The impetus for the present study arises from the conversion from harmonic num bers h=5 and 10 to h=1 and 2 for LHC operation. The instability has recently been diagnosed as a sextupole mode. In this paper, which is a synopsis of two laboratory notes [3,4], are presented experim ental results from machine development (MD) periods, and a detailed theoretical explanation for the instability (and its correction) that considers feedback from the beam versus the cavity fundamental
New technique for bunch shape flattening
A technique for increasing the bunching factor (Bf) is described. Typically in booster-type synchrotrons, it is important to reduce the transverse space-charge tune shift. One means to achieve this is to increase the ratio of average to peak longitudinal charge density. Essentially, the idea is to create hollow bunches by sweeping high-harmonic empty buckets into the particle beam prior to bunching and acceleration. Successful beam experiments are reported with supporting LONG1D simulation studies performed on the CERN PS Booster for both single and dual rf cases. The longitudinally hollow bunches also benefit the receiving ring during the double batch transfer where half of the PS has to wait 1.2 seconds at low energy for the second injection. A 15th harmonic rf system was used to form the empty buckets. Simulations show that for the single harmonic case, Bf is increased from 0.28 to 0.38, and for the dual harmonic one, Bf is increased from 0.45 to 0.55 (values at 100 MeV). The flattening technique has been tested successfully with the first harmonic to 1 GeV and to 100 MeV for dual harmonic acceleration
Beam Dynamics in High Intensity Cyclotrons Including Neighboring Bunch Effects: Model, Implementation and Application
Space charge effects, being one of the most significant collective effects,
play an important role in high intensity cyclotrons. However, for cyclotrons
with small turn separation, other existing effects are of equal importance.
Interactions of radially neighboring bunches are also present, but their
combined effects has not yet been investigated in any great detail. In this
paper, a new particle in cell based self-consistent numerical simulation model
is presented for the first time. The model covers neighboring bunch effects and
is implemented in the three-dimensional object-oriented parallel code
OPAL-cycl, a flavor of the OPAL framework. We discuss this model together with
its implementation and validation. Simulation results are presented from the
PSI 590 MeV Ring Cyclotron in the context of the ongoing high intensity upgrade
program, which aims to provide a beam power of 1.8 MW (CW) at the target
destination
A Cost-Effective Design for a Neutrino Factory
There have been active efforts in the U.S., Europe, and Japan on the design
of a Neutrino Factory. This type of facility produces intense beams of
neutrinos from the decay of muons in a high energy storage ring. In the U.S., a
second detailed Feasibility Study (FS2) for a Neutrino Factory was completed in
2001. Since that report was published, new ideas in bunching, cooling and
acceleration of muon beams have been developed. We have incorporated these
ideas into a new facility design, which we designate as Study 2B (ST2B), that
should lead to significant cost savings over the FS2 design.Comment: 46 pages, 38 figures; to be submitted to Physical Review Special
Topics: Accelerators and Beam
Simulation Study of the Magnetized Electron Beam
Electron cooling of the ion beam plays an important role in electron ion colliders to obtain the required high luminosity. This cooling efficiency can be enhanced by using a magnetized electron beam, where the cooling process occurs inside a solenoid field. This paper compares the predictions of ASTRA and GPT simulations to measurements made using a DC high voltage photogun producing magnetized electron beam, related to beam size and rotation angles as a function of the photogun magnetizing solenoid and other parameters
300 kV DC High Voltage Photogun With Inverted Insulator Geometry and CsKâ‚‚sb Photocathode
A compact DC high voltage photogun with inverted-insulator geometry was designed, built and operated reliably at 300 kV bias voltage using alkali-antimonide photocathodes. This presentation describes key electrostatic design features of the photogun with accompanying emittance measurements obtained across the entire photocathode surface that speak to field non-uniformity within the cathode/anode gap. A summary of initial photocathode lifetime measurements at beam currents up to 4.5 mA is also presented
- …