2 research outputs found

    Echo-planare 31P-NMR-spektroskopische Bildgebung in vivo bei 7T

    Get PDF
    31P-NMR-Spektroskopie ermöglicht die nicht-invasive Beobachtung des Energiestoffwechsels im lebenden Gewebe. In dieser Arbeit wurde eine echo-planare 31P-spektroskopische Bildgebungsmethode (31P-EPSI) für In-vivo-Messungen bei einer Magnetfeldstärke von B0 = 7T entwickelt und validiert. Die Methode nutzt eine segmentierte Aufnahme der spektralen Dimension, eine Aufnahmegewichtung und den nuklearen Overhauser-Effekt (31P-{1H}-NOE). Bildartefakte der echo-planaren Auslese wurden eingehend untersucht und konnten erfolgreich vermindert werden. Zur Optimierung der Signalausbeute von 31P-EPSI wurde ein theoretisches Modell, das die Sensitivität (SNR) der Sequenz und die Dynamik des 31P-{1H}-NOE beschreibt, erstellt und in Modellmessungen validiert (Signalgewinn in vivo bis zu 35%). Die Technik wurde in Messungen an Wadenmuskulatur und Gehirn von Probanden angewendet. Die In-vivo-31P-EPSI-Spektren sind von vergleichbarer Qualität wie In-vivo-31P-Spektren mit konventionellen Aufnahmetechniken. Schließlich wurde die 31P-EPSI-Sequenz für funktionelle 31P-spektroskopische Bildgebung unter Belastung der Wadenmuskulatur eingesetzt. Die Veränderungen der Signalintensität von Metaboliten wie Phosphokreatin oder Änderungen des Gewebe-pH-Wertes konnten dabei mit hoher zeitlicher Auflösung (15-30s für einen 16x16-EPSI-Datensatz) verfolgt werden. Die 31P-EPSI-Technik bei B0 = 7T eröffnet Anwendungsmöglichkeiten für nicht-invasive Untersuchungen der Biophysik des Energiestoffwechsels

    First implementation of dynamic oxygen-17 (17O) magnetic resonance imaging at 7 Tesla during neuronal stimulation in the human brain.

    Get PDF
    OBJECTIVE First implementation of dynamic oxygen-17 (17O) MRI at 7 Tesla (T) during neuronal stimulation in the human brain. METHODS Five healthy volunteers underwent a three-phase 17O gas (17O2) inhalation experiment. Combined right-side visual stimulus and right-hand finger tapping were used to achieve neuronal stimulation in the left cerebral hemisphere. Data analysis included the evaluation of the relative partial volume (PV)-corrected time evolution of absolute 17O water (H217O) concentration and of the relative signal evolution without PV correction. Statistical analysis was performed using a one-tailed paired t test. Blood oxygen level-dependent (BOLD) experiments were performed to validate the stimulation paradigm. RESULTS The BOLD maps showed significant activity in the stimulated left visual and sensorimotor cortex compared to the non-stimulated right side. PV correction of 17O MR data resulted in high signal fluctuations with a noise level of 10% due to small regions of interest (ROI), impeding further quantitative analysis. Statistical evaluation of the relative H217O signal with PV correction (p = 0.168) and without (p = 0.382) did not show significant difference between the stimulated left and non-stimulated right sensorimotor ROI. DISCUSSION The change of cerebral oxygen metabolism induced by sensorimotor and visual stimulation is not large enough to be reliably detected with the current setup and methodology of dynamic 17O MRI at 7 T
    corecore