313 research outputs found

    Scintillator developments for high energy physics and medical imaging

    Get PDF
    Scintillating crystals have been for a long time developed as a basic component in particle detectors with a strong spin-off in the field of medical imaging. A typical example is BGO, which has become the main component of PET scanners since the large effort made by the L3 experiment at CERN to develop low cost production methods for this crystal. Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for high energy physics and for a new generation of medical imaging devices with increased resolution and sensitivity. The examples of the lead tungstate crystal for the CMS experiment at CERN (high energy physics) as well as of new materials under development for medical imaging will be described with an emphasis on the mutual benefit both fields can extract from a common R&D effort. (14 refs)

    Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ сцинтилляционныС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ для ΠΊΠ°Π»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π½Π° циркулярных ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅Ρ€Π°Ρ…

    Get PDF
    The most probable scenario for the development of experimental high-energy physics in the next 50 years is the creation of a family of Future Circular Colliders (FCC) at CERN, a Circular Electron–Positron Collider at China, and a Future Electron-Ion Collider at Brookhaven (USA), which continue the Large Hadron Collider (LHC) scientific program within the framework of the Standard Model and beyond it. The first generation of colliders to be put into operation will utilize the electron beam as one of the colliding species to provide precise mass spectroscopy in a wide energy range. Similarly to the measurements at the high luminosity phase of the LHC operation, the most important property of the detectors to be used in the experimental setup is a combination of the short response of the detectors and their high time resolution. The radiation tolerance to a harsh irradiation environment remains mandatory but not the main factor of the collider’s experiments using electronic beams. A short response in combination with high time resolution ensures minimization of the influence of the pile-up and spill-over effects at the high frequency of collisions (higher than 50 MGz). The radiation hardness of the materials maintains the long-term high accuracy of the detector calibration. This paper discusses the prospects for using modern inorganic scintillation materials for calorimetric detectors at future colliders.НаиболСС вСроятным сцСнариСм развития ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΈΠ·ΠΈΠΊΠΈ высоких энСргий Π² блиТайшиС 50 Π»Π΅Ρ‚ являСтся созданиС сСмСйства ΠΊΠΎΠ»ΡŒΡ†Π΅Π²Ρ‹Ρ… ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅Ρ€ΠΎΠ² Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ (FCC) Π² ЦЕРНС, ΠΊΠΎΠ»ΡŒΡ†Π΅Π²ΠΎΠ³ΠΎ элСктрон-ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅Ρ€Π° (CEPC) Π² КНР ΠΈ Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ элСктрон-ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅Ρ€Π° Π² Π‘Ρ€ΡƒΠΊΡ…Π΅ΠΉΠ²Π΅Π½Π΅ (БША), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‚ Π½Π°ΡƒΡ‡Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡƒ Π‘ΠΎΠ»ΡŒΡˆΠΎΠ³ΠΎ Π°Π΄Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅Ρ€Π° (LHC) Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ Π·Π° Π΅Π΅ ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ. ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅Ρ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Π²Π΅Π΄ΡƒΡ‚ Π² ΡΠΊΡΠΏΠ»ΡƒΠ°Ρ‚Π°Ρ†ΠΈΡŽ, Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ элСктроны Π² качСствС ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΡΡ‚Π°Π»ΠΊΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ частиц для обСспСчСния Ρ‚ΠΎΡ‡Π½ΠΎΠΉ масс-спСктроскопии Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ энСргий. Подобно измСрСниям Π² Ρ„Π°Π·Π΅ высокой свСтимости LHC, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ΠΌ свойством Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… установках, являСтся сочСтаниС ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ высокого Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Радиационная ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ Π² условиях Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ½Π° экспСримСнтов остаСтся ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Π½ΠΎ Π½Π΅ основным Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅Ρ€Π½Ρ‹Ρ… экспСримСнтов с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ элСктронных ΠΏΡƒΡ‡ΠΊΠΎΠ². ΠšΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ ΠΎΡ‚ΠΊΠ»ΠΈΠΊ Π² сочСтании с высоким Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ обСспСчиваСт ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ влияния эффСктов пСрСкрытия сигналов событий ΠΈ налоТСния ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈ высокой частотС столкновСний, ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‰Π΅ΠΉ 50 ΠœΠ“Ρ†. Радиационная ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² обСспСчиваСт Π΄ΠΎΠ»Π³ΠΎΡΡ€ΠΎΡ‡Π½ΡƒΡŽ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΊΠΈ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π°. Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ пСрспСктивы использования соврСмСнных нСорганичСских сцинтилляционных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для калоримСтричСских Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅Ρ€Π°Ρ… Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ

    Π“Π°Π΄ΠΎΠ»ΠΈΠ½ΠΈΠΉ-содСрТащСС сцинтилляционноС стСкло для рСгистрации Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ энСргий

    Get PDF
    Inorganic scintillation glasses form a domain of rapidly evolving detector materials used to measure various types of ionizing radiation. The most widespread are lithium-silicate glasses enriched with the 6Li isotope, which are used to register thermal neutrons. At the same time, due to the specificity of the energy dependence of the neutron cross-section of light nuclei, such materials are of little use for the evaluation of epithermal and more highly energetic neutrons. The use of rare earth elements in the composition of glasses makes it possible to increase the sensitivity to neutrons. In the BaO–Gd2O3–SiO2 system, doped with Ce ions, a scintillation glass with a yield of at least 2500 photons / MeV was created for the first time, which permits to create inexpensive detector elements of a significant volume for registering neutrons. It has been shown that a detector based on BaO–Gd2O3–SiO2 glass has satisfactory properties when detecting neutrons in a wide spectrum of their energies.НСорганичСскиС сцинтилляционныС стСкла Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ Π΄ΠΎΠΌΠ΅Π½ Π±Ρ‹ΡΡ‚Ρ€ΠΎΡ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… для дСтСктирования Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ излучСния. НаибольшСС распространСниС ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π»ΠΈΡ‚ΠΈΠΉ-силикатныС стСкла, ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½Ρ‹Π΅ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠΎΠΌ 6Li, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для рСгистрации Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ². ВмСстС с Ρ‚Π΅ΠΌ Π² силу спСцифики энСргСтичСской зависимости сСчСния Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² Π»Π΅Π³ΠΊΠΈΡ… ядСр Ρ‚Π°ΠΊΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΌΠ°Π»ΠΎΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹ для рСгистрации ΡΠΏΠΈΡ‚Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π±ΠΎΠ»Π΅Π΅ высокоэнСргСтичных Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ². ИспользованиС Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов Π² составС стСкол позволяСт ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π°ΠΌ. Π’ систСмС BaO–Gd2O3–SiO2 ΠΏΡ€ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½Π°ΠΌΠΈ цСрия Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ создано сцинтилляционноС стСкло с Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2500 Ρ„ΠΎΡ‚/ΠœΡΠ’, Ρ‡Ρ‚ΠΎ позволяСт ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ Π½Π΅Π΄ΠΎΡ€ΠΎΠ³ΠΈΠ΅ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ элСмСнты Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ объСма для рСгистрации Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π° основС стСкла BaO–Gd2O3–SiO2 ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ свойствами ΠΏΡ€ΠΈ рСгистрации Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ спСктрС ΠΈΡ… энСргий

    ΠšΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ нСупорядочСнныС Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΈΠΎΠ½Π°ΠΌΠΈ цСрия кристаллы Ρ‚ΠΈΠΏΠ° Π³Ρ€Π°Π½Π°Ρ‚Π° для Π±ΠΎΠ»Π΅Π΅ ярких ΠΈ быстрых сцинтилляций

    Get PDF
    Ce-doped tetracationic garnets (Gd,β€ŠM)3Al2Ga3O12(Mβ€Š=β€ŠY,β€ŠLu) form a family of new multipurpose promising scintillation materials. The aim of this work was to evaluate the scintillation yield in the materials of quaternary garnets activated by cerium ions with partial isovalent substitution of the matrix-forming gadolinium ions by yttrium or lutetium ions.Materials were obtained in the form of polycrystalline ceramic samples, and the best results were shown by samples obtained from the raw materials produced by the coprecipitation method. It was found that ceramics obtained from coprecipitated raw materials ensure a uniform distribution of activator ions in the multi-cationic matrices, which enables the high light yield and fast scintillation kinetics of the scintillation. It was demonstrated that the superstoichiometric content of lutetium/gadolinium in the material is an effective method to suppress phosphorescence accompanied scintillation. For ceramics with the composition (Gd,β€ŠLu)3Al2Ga3O12β€Š, a scintillation yield of more than 50.000 ph/MeV was achieved. The scintillation kinetics was measured to be close to the kinetics with a decay constant of 50 ns.In terms of the set of the parameters, the developed scintillation materials are close to the recently developed alkali halide materials LaBr3:Ce, GdBr3:Ce. Moreover, they have high mechanical hardness, are characterized by the absence of hygroscopicity, and are better adapted to the manufacture of pixel detectors used in modern devices for medical diagnostics.Π§Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Π΅ Π³Ρ€Π°Π½Π°Ρ‚Ρ‹ (Gd,β€ŠM)3Al2Ga3O12(Mβ€Š=β€ŠY,β€ŠLu), Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΈΠΎΠ½Π°ΠΌΠΈ Ce, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ сСмСйство Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡ†Π΅Π»Π΅Π²Ρ‹Ρ… пСрспСктивных сцинтилляционных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΡ†Π΅Π½ΠΊΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π° сцинтилляций Π² сцинтилляционных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Ρ… Ρ‡Π΅Ρ‚Π²Π΅Ρ€Π½Ρ‹Ρ… Π³Ρ€Π°Π½Π°Ρ‚ΠΎΠ², Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈΠΎΠ½Π°ΠΌΠΈ цСрия ΠΏΡ€ΠΈ частичной ΠΈΠ·ΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠΉ Π·Π°ΠΌΠ΅Π½Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠΎΠ½ΠΎΠ² гадолиния ΠΈΠΎΠ½Π°ΠΌΠΈ иттрия ΠΈΠ»ΠΈ Π»ΡŽΡ‚Π΅Ρ†ΠΈΡ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π² Π²ΠΈΠ΄Π΅ поликристалличСских пластин, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· ΡΡ‹Ρ€ΡŒΡ, ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ Β ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ  соосаТдСния.  УстановлСно, Ρ‡Ρ‚ΠΎ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠ°, получСнная ΠΈΠ· соосаТдённого ΡΡ‹Ρ€ΡŒΡ, обСспСчиваСт ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ распрСдСлСния Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΈΠΎΠ½ΠΎΠ² Π² ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°Ρ…. Π­Ρ‚ΠΎ, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, обСспСчиваСт достиТСниС высокого свСтовыхода ΠΈ быстрой ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ сцинтилляции. Показано, Ρ‡Ρ‚ΠΎ свСрхстСхиомСтричСскоС содСрТаниС Π»ΡŽΡ‚Π΅Ρ†ΠΈΡ/гадолиния Π² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ для изготовлСния ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ являСтся эффСктивным срСдством подавлСния фосфорСсцСнции. Для ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ состава (Gd,β€ŠLu)3Al2Ga3O12 достигнут Π²Ρ‹Ρ…ΠΎΠ΄ сцинтилляций Π±ΠΎΠ»Π΅Π΅ 50000 Ρ„ΠΎΡ‚./ΠœΡΠ’, Π° усрСднённая константа затухания ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ сцинтилляций Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ 50 нс.По совокупности ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ сцинтилляционныС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ Π½Π΅Π΄Π°Π²Π½ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎ-Π³Π°Π»ΠΎΠΈΠ΄Π½Ρ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌ LaBr3:Ce, GdBr3:Ce, ΠΊ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ высокой Ρ‚Π²Ρ‘Ρ€Π΄ΠΎΡΡ‚ΡŒΡŽ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ отсутствиСм гигроскопичности ΠΈ Π»ΡƒΡ‡ΡˆΠ΅ приспособлСны ΠΊ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΡŽ ΠΏΠΈΠΊΡΠ΅Π»ΡŒΠ½Ρ‹Ρ… Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π² соврСмСнных устройствах для мСдицинской диагностики

    Advances of the Cubic Symmetry Crystalline Systems to Create Complex, Bright Luminescent Ceramics

    Get PDF
    A method to create compositionally disordered compounds with a high number of cations in the matrices, that utilize the cubic spatial symmetry of the garnet-type crystalline systems is demonstrated. Mixtures of the garnet-type powdered materials solely doped with Ce were used to create atomic compositions of high complexity. Several mixed systems, namely Gd3Al2Ga3O12/(Gd,Y)3Al2Ga3O12, Y3Al5O12/Gd3Al2Ga3O12, and Y3Al5O12/Y3Al2Ga3O12 were annealed, compacted and sintered in air. The materials were evaluated for structural, luminescence, and scintillation properties. It was demonstrated that the properties of the resulting ceramics are a little dependent on the granularity of powders when the median particle size is below ~5 ΞΌm. Β© 2023 by the authors.National Research Council Canada, NRC; Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2021-1353, 075-15-2023-370, 22.02.2023; Ural Federal University, UrFU; Ministry of Science and Higher Education of the Russian Federation: FEUZ-2023-0013The authors at NRC β€œKurchatov Institute” acknowledge support from the Russian Ministry of Science and Education, Agreement No. 075-15-2021-1353. Analytical research was conducted using equipment of the Β«Research Chemical and Analytical Center NRCΒ» Β«Kurchatov InstituteΒ» Shared Research Facilities under project’s financial support by the Russian Federation, represented by The Ministry of Science and Higher Education of the Russian Federation, Agreement No. 075-15-2023-370 dd. 22.02.2023. Authors at Ural Federal University acknowledge partial support from the Ministry of Science and Education, project No. FEUZ-2023-0013 and program of strategic academic leadership β€œPriority 2030”

    Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family

    Full text link
    Ceramics of quaternary garnets (Gd,Y)3Al2Ga3O12 doped with Ce, Tb have been fabricated and evaluated as prospective materials for indirect energy converters of Ξ±-and Ξ²-voltaic. Samples were characterized at excitation with an X-ray source and an intense 150 keV electron beam and showed good temperature stability of their emission and tolerance to irradiation. The role of X-rays accompanied the Ξ±-particle emitting in the increase of the conversion efficiency is clarified. The garnet-type structure of the matrix in the developed materials allows the production of quality crystalline mass with a light yield exceeding that of the commonly used YAG: Ce scintillator by a factor of two times. Β© 2022 Korean Nuclear SocietyMinistry of Education and Science of the Russian Federation,Β Minobrnauka: 075-15-2021-1353,Β FEUZ-2020-0060;Β Ministerstwo Edukacji i Nauki,Β MNiSW: 075-11-2021-070;Β Ministry of Science and Higher Education of the Russian FederationAuthors with affiliations b, d, e and f acknowledge support from Russian Ministry of Science and Education grant No. 075-15-2021-1353 . The scientific equipment provided by shared research facilities β€œScientific Research Analytical Center of National Research Center β€œKurchatov Institute” – IREA” was used, with financial support of Russian Federation, represented by the Ministry of Science and Higher Education, agreement No. 075-11-2021-070 dated August 19, 2021. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project No. FEUZ-2020-0060 ) (authors with affiliation β€œc”).Authors with affiliations b, d, e and f acknowledge support from Russian Ministry of Science and Education grant No. 075-15-2021-1353. The scientific equipment provided by shared research facilities β€œScientific Research Analytical Center of National Research Center β€œKurchatov Institute” – IREA” was used, with financial support of Russian Federation, represented by the Ministry of Science and Higher Education, agreement No. 075-11-2021-070 dated August 19, 2021. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project No. FEUZ-2020-0060) (authors with affiliation β€œc”)

    The Saturation of the Response to an Electron Beam of Ce- and Tb-Doped GYAGG Phosphors for Indirect Ξ²-Voltaics

    Get PDF
    GYAGG:Tb (Ce) scintillators have been confirmed to be promising sources of light emission when excited by an intense 150 keV electron beam. The saturation of the scintillation yield under such excitation conditions has been studied. To explain the results obtained, a model that considers the Auger quenching mechanism was used. The Ce-doped material did not show saturation, whereas a moderate 30% drop of the yield was measured in the Tb-doped sample at the highest excitation beam intensity ~1 A/cm2. This put forward a way to exploit the Tb-doped scintillator for indirect Ξ²-voltaic batteries. Β© 2023 by the authors.National Research Council Canada, NRC; Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2021-1353, FEUZ 2023-0013The authors at NRC β€œKurchatov Institute” and Moscow State University acknowledge support from the Russian Ministry of Science and Education, Agreement No. 075-15-2021-1353. Analytical studies have been carried out using the scientific equipment of NRC Kurchatov Institute IREA. The research at Ural Federal University was partially supported by the Ministry of Science and Higher Education of the Russian Federation (Project FEUZ 2023-0013)
    • …
    corecore