313 research outputs found
Scintillator developments for high energy physics and medical imaging
Scintillating crystals have been for a long time developed as a basic component in particle detectors with a strong spin-off in the field of medical imaging. A typical example is BGO, which has become the main component of PET scanners since the large effort made by the L3 experiment at CERN to develop low cost production methods for this crystal. Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for high energy physics and for a new generation of medical imaging devices with increased resolution and sensitivity. The examples of the lead tungstate crystal for the CMS experiment at CERN (high energy physics) as well as of new materials under development for medical imaging will be described with an emphasis on the mutual benefit both fields can extract from a common R&D effort. (14 refs)
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π΄Π»Ρ ΠΊΠ°Π»ΠΎΡΠΈΠΌΠ΅ΡΡΠΈΠΈ Π½Π° ΡΠΈΡΠΊΡΠ»ΡΡΠ½ΡΡ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅ΡΠ°Ρ
The most probable scenario for the development of experimental high-energy physics in the next 50 years is the creation of a family of Future Circular Colliders (FCC) at CERN, a Circular ElectronβPositron Collider at China, and a Future Electron-Ion Collider at Brookhaven (USA), which continue the Large Hadron Collider (LHC) scientific program within the framework of the Standard Model and beyond it. The first generation of colliders to be put into operation will utilize the electron beam as one of the colliding species to provide precise mass spectroscopy in a wide energy range. Similarly to the measurements at the high luminosity phase of the LHC operation, the most important property of the detectors to be used in the experimental setup is a combination of the short response of the detectors and their high time resolution. The radiation tolerance to a harsh irradiation environment remains mandatory but not the main factor of the colliderβs experiments using electronic beams. A short response in combination with high time resolution ensures minimization of the influence of the pile-up and spill-over effects at the high frequency of collisions (higher than 50 MGz). The radiation hardness of the materials maintains the long-term high accuracy of the detector calibration. This paper discusses the prospects for using modern inorganic scintillation materials for calorimetric detectors at future colliders.ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π΅ΡΠΎΡΡΠ½ΡΠΌ ΡΡΠ΅Π½Π°ΡΠΈΠ΅ΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ Π²ΡΡΠΎΠΊΠΈΡ
ΡΠ½Π΅ΡΠ³ΠΈΠΉ Π² Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΠ΅ 50 Π»Π΅Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° ΠΊΠΎΠ»ΡΡΠ΅Π²ΡΡ
ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅ΡΠΎΠ² Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ (FCC) Π² Π¦ΠΠ ΠΠ΅, ΠΊΠΎΠ»ΡΡΠ΅Π²ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½-ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅ΡΠ° (CEPC) Π² ΠΠΠ ΠΈ Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½-ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅ΡΠ° Π² ΠΡΡΠΊΡ
Π΅ΠΉΠ²Π΅Π½Π΅ (Π‘Π¨Π), ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡ Π½Π°ΡΡΠ½ΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΠΎΠ»ΡΡΠΎΠ³ΠΎ Π°Π΄ΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅ΡΠ° (LHC) Π² ΡΠ°ΠΌΠΊΠ°Ρ
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ Π·Π° Π΅Π΅ ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ. ΠΠ΅ΡΠ²ΠΎΠ΅ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Π²Π²Π΅Π΄ΡΡ Π² ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΡ, Π±ΡΠ΄ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΡΡΠ°Π»ΠΊΠΈΠ²Π°ΡΡΠΈΡ
ΡΡ ΡΠ°ΡΡΠΈΡ Π΄Π»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ Π² ΡΠΈΡΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠ½Π΅ΡΠ³ΠΈΠΉ. ΠΠΎΠ΄ΠΎΠ±Π½ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡΠΌ Π² ΡΠ°Π·Π΅ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ²Π΅ΡΠΈΠΌΠΎΡΡΠΈ LHC, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½ΡΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ΄ΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠ°Ρ
, ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΈΠΊΠ° Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠΎΠ² ΠΈ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π Π°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΡΡΠΎΠΉΠΊΠΎΡΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠ½Π° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² ΠΎΡΡΠ°Π΅ΡΡΡ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, Π½ΠΎ Π½Π΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅ΡΠ½ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΏΡΡΠΊΠΎΠ². ΠΠΎΡΠΎΡΠΊΠΈΠΉ ΠΎΡΠΊΠ»ΠΈΠΊ Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Π²ΡΡΠΎΠΊΠΈΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°ΡΠΈΡ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΎΠ² ΠΏΠ΅ΡΠ΅ΠΊΡΡΡΠΈΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΡΠΎΠ±ΡΡΠΈΠΉ ΠΈ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠΊΠ»ΠΈΠΊΠ° Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠ° ΠΏΡΠΈ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ΅ ΡΡΠΎΠ»ΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠΉ, ΠΏΡΠ΅Π²ΡΡΠ°ΡΡΠ΅ΠΉ 50 ΠΠΡ. Π Π°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΡΡΠΎΠΉΠΊΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ Π΄ΠΎΠ»Π³ΠΎΡΡΠΎΡΠ½ΡΡ Π²ΡΡΠΎΠΊΡΡ ΡΠΎΡΠ½ΠΎΡΡΡ ΠΊΠ°Π»ΠΈΠ±ΡΠΎΠ²ΠΊΠΈ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠ°. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ ΠΎΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π΄Π»Ρ ΠΊΠ°Π»ΠΎΡΠΈΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠΎΠ² Π½Π° ΠΊΠΎΠ»Π»Π°ΠΉΠ΄Π΅ΡΠ°Ρ
Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ
ΠΠ°Π΄ΠΎΠ»ΠΈΠ½ΠΈΠΉ-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π΅ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΡΡΠ΅ΠΊΠ»ΠΎ Π΄Π»Ρ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ Π½Π΅ΠΉΡΡΠΎΠ½ΠΎΠ² Π² ΡΠΈΡΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠ½Π΅ΡΠ³ΠΈΠΉ
Inorganic scintillation glasses form a domain of rapidly evolving detector materials used to measure various types of ionizing radiation. The most widespread are lithium-silicate glasses enriched with the 6Li isotope, which are used to register thermal neutrons. At the same time, due to the specificity of the energy dependence of the neutron cross-section of light nuclei, such materials are of little use for the evaluation of epithermal and more highly energetic neutrons. The use of rare earth elements in the composition of glasses makes it possible to increase the sensitivity to neutrons. In the BaOβGd2O3βSiO2 system, doped with Ce ions, a scintillation glass with a yield of at least 2500 photons / MeV was created for the first time, which permits to create inexpensive detector elements of a significant volume for registering neutrons. It has been shown that a detector based on BaOβGd2O3βSiO2 glass has satisfactory properties when detecting neutrons in a wide spectrum of their energies.ΠΠ΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΡΠ΅ΠΊΠ»Π° ΡΠΎΡΠΌΠΈΡΡΡΡ Π΄ΠΎΠΌΠ΅Π½ Π±ΡΡΡΡΠΎΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΠΈΡ
ΡΡ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ
Π΄Π»Ρ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΠΈΠΎΠ½ΠΈΠ·ΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ Π»ΠΈΡΠΈΠΉ-ΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΠ΅ ΡΡΠ΅ΠΊΠ»Π°, ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½Π½ΡΠ΅ ΠΈΠ·ΠΎΡΠΎΠΏΠΎΠΌ 6Li, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π»Ρ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
Π½Π΅ΠΉΡΡΠΎΠ½ΠΎΠ². ΠΠΌΠ΅ΡΡΠ΅ Ρ ΡΠ΅ΠΌ Π² ΡΠΈΠ»Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠΈ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΉΡΡΠΎΠ½ΠΎΠ² Π»Π΅Π³ΠΊΠΈΡ
ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΌΠ°Π»ΠΎΠΏΡΠΈΠ³ΠΎΠ΄Π½Ρ Π΄Π»Ρ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠΏΠΈΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΡΡ
ΠΈ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ½ΡΡ
Π½Π΅ΠΉΡΡΠΎΠ½ΠΎΠ². ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΡΠΎΡΡΠ°Π²Π΅ ΡΡΠ΅ΠΊΠΎΠ» ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊ Π½Π΅ΠΉΡΡΠΎΠ½Π°ΠΌ. Π ΡΠΈΡΡΠ΅ΠΌΠ΅ BaOβGd2O3βSiO2 ΠΏΡΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΈΠΎΠ½Π°ΠΌΠΈ ΡΠ΅ΡΠΈΡ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΎΠ·Π΄Π°Π½ΠΎ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΡΡΠ΅ΠΊΠ»ΠΎ Ρ Π²ΡΡ
ΠΎΠ΄ΠΎΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2500 ΡΠΎΡ/ΠΡΠ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ Π½Π΅Π΄ΠΎΡΠΎΠ³ΠΈΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠ½ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° Π΄Π»Ρ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ Π½Π΅ΠΉΡΡΠΎΠ½ΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠ΅ΠΊΠ»Π° BaOβGd2O3βSiO2 ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠ½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΏΡΠΈ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ Π½Π΅ΠΉΡΡΠΎΠ½ΠΎΠ² Π² ΡΠΈΡΠΎΠΊΠΎΠΌ ΡΠΏΠ΅ΠΊΡΡΠ΅ ΠΈΡ
ΡΠ½Π΅ΡΠ³ΠΈΠΉ
ΠΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎ Π½Π΅ΡΠΏΠΎΡΡΠ΄ΠΎΡΠ΅Π½Π½ΡΠ΅ Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΈΠΎΠ½Π°ΠΌΠΈ ΡΠ΅ΡΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»Ρ ΡΠΈΠΏΠ° Π³ΡΠ°Π½Π°ΡΠ° Π΄Π»Ρ Π±ΠΎΠ»Π΅Π΅ ΡΡΠΊΠΈΡ ΠΈ Π±ΡΡΡΡΡΡ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΉ
Ce-doped tetracationic garnets (Gd,βM)3Al2Ga3O12(Mβ=βY,βLu) form a family of new multipurpose promising scintillation materials. The aim of this work was to evaluate the scintillation yield in the materials of quaternary garnets activated by cerium ions with partial isovalent substitution of the matrix-forming gadolinium ions by yttrium or lutetium ions.Materials were obtained in the form of polycrystalline ceramic samples, and the best results were shown by samples obtained from the raw materials produced by the coprecipitation method. It was found that ceramics obtained from coprecipitated raw materials ensure a uniform distribution of activator ions in the multi-cationic matrices, which enables the high light yield and fast scintillation kinetics of the scintillation. It was demonstrated that the superstoichiometric content of lutetium/gadolinium in the material is an effective method to suppress phosphorescence accompanied scintillation. For ceramics with the composition (Gd,βLu)3Al2Ga3O12β, a scintillation yield of more than 50.000 ph/MeV was achieved. The scintillation kinetics was measured to be close to the kinetics with a decay constant of 50 ns.In terms of the set of the parameters, the developed scintillation materials are close to the recently developed alkali halide materials LaBr3:Ce, GdBr3:Ce. Moreover, they have high mechanical hardness, are characterized by the absence of hygroscopicity, and are better adapted to the manufacture of pixel detectors used in modern devices for medical diagnostics.Π§Π΅ΡΡΡΡΡ
ΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π³ΡΠ°Π½Π°ΡΡ (Gd,βM)3Al2Ga3O12(Mβ=βY,βLu), Π»Π΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΈΠΎΠ½Π°ΠΌΠΈ Ce, ΡΠΎΡΠΌΠΈΡΡΡΡ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²ΠΎ Π½ΠΎΠ²ΡΡ
ΠΌΠ½ΠΎΠ³ΠΎΡΠ΅Π»Π΅Π²ΡΡ
ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². Π¦Π΅Π»ΡΡ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΡΠ΅Π½ΠΊΠΈ Π²ΡΡ
ΠΎΠ΄Π° ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΉ Π² ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°Ρ
ΡΠ΅ΡΠ²Π΅ΡΠ½ΡΡ
Π³ΡΠ°Π½Π°ΡΠΎΠ², Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈΠΎΠ½Π°ΠΌΠΈ ΡΠ΅ΡΠΈΡ ΠΏΡΠΈ ΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΠΈΠ·ΠΎΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ Π·Π°ΠΌΠ΅Π½Π΅ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΠΈΠΎΠ½ΠΎΠ² Π³Π°Π΄ΠΎΠ»ΠΈΠ½ΠΈΡ ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΈΡΡΡΠΈΡ ΠΈΠ»ΠΈ Π»ΡΡΠ΅ΡΠΈΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΠ»ΠΈΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ»Π°ΡΡΠΈΠ½, ΠΏΡΠΈΡΡΠΌ Π½Π°ΠΈΠ»ΡΡΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΎΠ±ΡΠ°Π·ΡΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΈΠ· ΡΡΡΡΡ, ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄ΡΠ½Π½ΠΎΠ³ΠΎ Β ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Β ΡΠΎΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ. Β Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠ°, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ ΠΈΠ· ΡΠΎΠΎΡΠ°ΠΆΠ΄ΡΠ½Π½ΠΎΠ³ΠΎ ΡΡΡΡΡ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π°ΡΠΎΡΠ½ΡΡ
ΠΈΠΎΠ½ΠΎΠ² Π² ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ°ΡΡΠΈΡΠ°Ρ
. ΠΡΠΎ, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΠ²Π΅ΡΠΎΠ²ΡΡ
ΠΎΠ΄Π° ΠΈ Π±ΡΡΡΡΠΎΠΉ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ²Π΅ΡΡ
ΡΡΠ΅Ρ
ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π»ΡΡΠ΅ΡΠΈΡ/Π³Π°Π΄ΠΎΠ»ΠΈΠ½ΠΈΡ Π² ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅ Π΄Π»Ρ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ. ΠΠ»Ρ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ ΡΠΎΡΡΠ°Π²Π° (Gd,βLu)3Al2Ga3O12Β Π΄ΠΎΡΡΠΈΠ³Π½ΡΡ Π²ΡΡ
ΠΎΠ΄ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΉ Π±ΠΎΠ»Π΅Π΅ 50000 ΡΠΎΡ./ΠΡΠ, Π° ΡΡΡΠ΅Π΄Π½ΡΠ½Π½Π°Ρ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ° Π·Π°ΡΡΡ
Π°Π½ΠΈΡ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΉ Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ 50 Π½Ρ.ΠΠΎ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΡΡΠΈΠ½ΡΠΈΠ»Π»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ Π½Π΅Π΄Π°Π²Π½ΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΌ ΡΠ΅Π»ΠΎΡΠ½ΠΎ-Π³Π°Π»ΠΎΠΈΠ΄Π½ΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°ΠΌ LaBr3:Ce, GdBr3:Ce, ΠΊ ΡΠΎΠΌΡ ΠΆΠ΅ ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ²ΡΡΠ΄ΠΎΡΡΡΡ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ΠΌ Π³ΠΈΠ³ΡΠΎΡΠΊΠΎΠΏΠΈΡΠ½ΠΎΡΡΠΈ ΠΈ Π»ΡΡΡΠ΅ ΠΏΡΠΈΡΠΏΠΎΡΠΎΠ±Π»Π΅Π½Ρ ΠΊ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΠΈΠΊΡΠ΅Π»ΡΠ½ΡΡ
Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ
Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ
Π΄Π»Ρ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ
Advances of the Cubic Symmetry Crystalline Systems to Create Complex, Bright Luminescent Ceramics
A method to create compositionally disordered compounds with a high number of cations in the matrices, that utilize the cubic spatial symmetry of the garnet-type crystalline systems is demonstrated. Mixtures of the garnet-type powdered materials solely doped with Ce were used to create atomic compositions of high complexity. Several mixed systems, namely Gd3Al2Ga3O12/(Gd,Y)3Al2Ga3O12, Y3Al5O12/Gd3Al2Ga3O12, and Y3Al5O12/Y3Al2Ga3O12 were annealed, compacted and sintered in air. The materials were evaluated for structural, luminescence, and scintillation properties. It was demonstrated that the properties of the resulting ceramics are a little dependent on the granularity of powders when the median particle size is below ~5 ΞΌm. Β© 2023 by the authors.National Research Council Canada, NRC; Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2021-1353, 075-15-2023-370, 22.02.2023; Ural Federal University, UrFU; Ministry of Science and Higher Education of the Russian Federation: FEUZ-2023-0013The authors at NRC βKurchatov Instituteβ acknowledge support from the Russian Ministry of Science and Education, Agreement No. 075-15-2021-1353. Analytical research was conducted using equipment of the Β«Research Chemical and Analytical Center NRCΒ» Β«Kurchatov InstituteΒ» Shared Research Facilities under projectβs financial support by the Russian Federation, represented by The Ministry of Science and Higher Education of the Russian Federation, Agreement No. 075-15-2023-370 dd. 22.02.2023. Authors at Ural Federal University acknowledge partial support from the Ministry of Science and Education, project No. FEUZ-2023-0013 and program of strategic academic leadership βPriority 2030β
Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family
Ceramics of quaternary garnets (Gd,Y)3Al2Ga3O12 doped with Ce, Tb have been fabricated and evaluated as prospective materials for indirect energy converters of Ξ±-and Ξ²-voltaic. Samples were characterized at excitation with an X-ray source and an intense 150 keV electron beam and showed good temperature stability of their emission and tolerance to irradiation. The role of X-rays accompanied the Ξ±-particle emitting in the increase of the conversion efficiency is clarified. The garnet-type structure of the matrix in the developed materials allows the production of quality crystalline mass with a light yield exceeding that of the commonly used YAG: Ce scintillator by a factor of two times. Β© 2022 Korean Nuclear SocietyMinistry of Education and Science of the Russian Federation,Β Minobrnauka: 075-15-2021-1353,Β FEUZ-2020-0060;Β Ministerstwo Edukacji i Nauki,Β MNiSW: 075-11-2021-070;Β Ministry of Science and Higher Education of the Russian FederationAuthors with affiliations b, d, e and f acknowledge support from Russian Ministry of Science and Education grant No. 075-15-2021-1353 . The scientific equipment provided by shared research facilities βScientific Research Analytical Center of National Research Center βKurchatov Instituteβ β IREAβ was used, with financial support of Russian Federation, represented by the Ministry of Science and Higher Education, agreement No. 075-11-2021-070 dated August 19, 2021. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project No. FEUZ-2020-0060 ) (authors with affiliation βcβ).Authors with affiliations b, d, e and f acknowledge support from Russian Ministry of Science and Education grant No. 075-15-2021-1353. The scientific equipment provided by shared research facilities βScientific Research Analytical Center of National Research Center βKurchatov Instituteβ β IREAβ was used, with financial support of Russian Federation, represented by the Ministry of Science and Higher Education, agreement No. 075-11-2021-070 dated August 19, 2021. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project No. FEUZ-2020-0060) (authors with affiliation βcβ)
The Saturation of the Response to an Electron Beam of Ce- and Tb-Doped GYAGG Phosphors for Indirect Ξ²-Voltaics
GYAGG:Tb (Ce) scintillators have been confirmed to be promising sources of light emission when excited by an intense 150 keV electron beam. The saturation of the scintillation yield under such excitation conditions has been studied. To explain the results obtained, a model that considers the Auger quenching mechanism was used. The Ce-doped material did not show saturation, whereas a moderate 30% drop of the yield was measured in the Tb-doped sample at the highest excitation beam intensity ~1 A/cm2. This put forward a way to exploit the Tb-doped scintillator for indirect Ξ²-voltaic batteries. Β© 2023 by the authors.National Research Council Canada, NRC; Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2021-1353, FEUZ 2023-0013The authors at NRC βKurchatov Instituteβ and Moscow State University acknowledge support from the Russian Ministry of Science and Education, Agreement No. 075-15-2021-1353. Analytical studies have been carried out using the scientific equipment of NRC Kurchatov Institute IREA. The research at Ural Federal University was partially supported by the Ministry of Science and Higher Education of the Russian Federation (Project FEUZ 2023-0013)
- β¦