8 research outputs found

    Comparision of mechanical properites of biodegradable PCL-based binary and ternary composites

    No full text
    Celem poni偶szych bada艅 by艂o por贸wnanie w艂a艣ciwo艣ci mechanicznych w艂贸kien kompozyt贸w polimerowo-ceramicznych na osnowie polikaprolaktonu (PCL) jako potencjalnego materia艂u do wytworzenia rusztowa艅 do regeneracji ubytk贸w tkanki kostnej w organizmie cz艂owieka. Jako nape艂niacz wykorzystano mikro-cz膮stki tr贸jfosforanu wapnia (TCP). Wytworzono r贸wnie偶 kompozyt potr贸jny zawieraj膮cy dodatkowo kopolimer kwasu mlekowego i glikolowego (PLGA). Przeprowadzono pr贸b臋 rozci膮gania oraz obserwacj臋 na skaningowym mikroskopie elektronowym. Wprowadzenie mikrocz膮stek TCP do osnowy PCL tylko w ma艂ym stopniu poprawi艂o w艂a艣ciwo艣ci mechaniczne kompozyt贸w. Dopiero dodatek PLGA spowodowa艂 znaczy wzrost sztywno艣ci oraz podwy偶szenie granicy plastyczno艣ci.The aim of present study was to compare the mechanical properties of binary and ternary composite fibers fabricated by means of combined solvent casting and fused deposition modeling techniques. The tested composites were composed of polycaprolactone (PCL) matrix and tricalcium (TCP) micro-particles (binary composite) and additionally poly(D,L-lactide- co-glycolide), PLGA, (ternary composite). TCP and PLGA were used as a reinforcement of the composites. Tensile test was conducted in order to determine the effect of TCP and PLGA on mechanical properties of the composites. Introduction to TCP particles had slight effect of the Young's modulus. However, addition of TCP and PLGA to PCL matrix significantly improved the mechanical properties of the ternary composite

    Overview of fabrication methods of plasmonic materials and selected alternative materials for plasmonic applications

    No full text
    Praca przedstawia przegl膮d literaturowy dotycz膮cy technologii otrzymywania materia艂贸w plazmonicznych oraz propozycji materia艂贸w alternatywnych do obecnie stosowanych materia艂贸w w obszarze plazmoniki. W analizie literaturowej przedstawiono por贸wnanie metod top-down i bottom-up do otrzymywania materia艂贸w plazmonicznych w postaci warstw, jak r贸wnie偶 jako materia艂贸w obj臋to艣ciowych. Dodatkowo wybrano potencjalnie najkorzystniejsze alternatywne materia艂y plazmoniczne, kt贸re mog膮 zast膮pi膰 wsp贸艂cze艣nie u偶ywane materia艂y konwencjonalne stosowane w dziedzinie plazmoniki.In this work we reviewed the fabrication methods of both plasmonic materials and novel alternative materials for plasmonics. The analysis of the literature enabled a comparison of 'top-down' and 'bottom-up' preparation methods of plasmonic materials, in the form of layers as well as bulk materials. In addition, potentially the best alternative plasmonic materials which can replace conventional materials for plasmonics are proposed

    Controlling Self-Assembly in Gyroid Terpolymer Films By Solvent Vapor Annealing.

    No full text
    The efficacy with which solvent vapor annealing (SVA) can control block copolymer self-assembly has so far been demonstrated primarily for the simplest class of copolymer, the linear diblock copolymer. Adding a third distinct block-thereby creating a triblock terpolymer-not only provides convenient access to complex continuous network morphologies, particularly the gyroid phases, but also opens up a route toward the fabrication of novel nanoscale devices such as optical metamaterials. Such applications, however, require the generation of well-ordered 3D continuous networks, which in turn requires a detailed understanding of the SVA process in terpolymer network morphologies. Here, in situ grazing-incidence small-angle X-ray scattering (GISAXS) is employed to study the self-assembly of a gyroid-forming triblock terpolymer during SVA, revealing the effects of several key SVA parameters on the morphology, lateral order, and, in particular, its preservation in the dried film. The robustness of the terpolymer gyroid morphology is a key requirement for successful SVA, allowing the exploration of annealing parameters which may enable the generation of films with long-range order, e.g., for optical metamaterial applications.ERC, EPSRC, E
    corecore