2 research outputs found

    Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations

    Full text link
    We deal with a class of equations driven by nonlocal, possibly degenerate, integro-differential operators of differentiability order s∈(0,1)s\in (0,1) and summability growth p>1p>1, whose model is the fractional pp-Laplacian with measurable coefficients. We state and prove several results for the corresponding weak supersolutions, as comparison principles, a priori bounds, lower semicontinuity, and many others. We then discuss the good definition of (s,p)(s,p)-superharmonic functions, by also proving some related properties. We finally introduce the nonlocal counterpart of the celebrated Perron method in nonlinear Potential Theory.Comment: To appear in Math. An

    A note on fractional supersolutions

    No full text
    We study a class of equations driven by nonlocal, possibly degenerate, integro-differential operators of differentiability order s∈(0,1)s\in (0,1) and summability growth p>1p>1, whose model is the fractional pp-Laplacian with measurable coefficients. We prove that the minimum of the corresponding weak supersolutions is a weak supersolution as well
    corecore