6 research outputs found

    Orthotopic editing of T-cell receptors

    No full text

    Detection of Low-Frequency Epitope-Specific T Cells in Blood of Healthy Individuals according to an Optimized In Vitro Amplification System

    No full text
    Detection and amplification of epitope-specific T cells hold great promise for diagnosis and therapy of cancer patients. Currently, measurement and retrieval of epitope-specific T cells is hampered by limited availability of patients’ biomaterials and lack of sensitive and easy-to-implement T cell priming and expansion. We have developed an in vitro T cell amplification system starting from healthy donor blood and tested different subsets and ratios of autologous T cells and APCs as well as the resting period between amplification cycles. We demonstrated in 10 different donors significantly enhanced frequency of T cells specific for MelanA/HLA-A2, which relied on coculturing of naive T cells and CD11c+ dendritic cells in a 1:1 ratio followed by three weekly amplification cycles using the effluent of the naive T cell sort as APCs, a 24-h rest period prior to every reamplification cycle, and IFN-γ production as a readout for epitope-specific T cells. Using this system, MelanA/HLA-A2-specific T cells were enriched by 200-fold, measuring up to 20-60% of all T cells. We extended this system to enrich NY-ESO-1/HLA-A2- and BMLF-1/HLAA2-specific T cells, examples of a cancer germline Ag and an oncoviral Ag differing in their ability to bind to HLA-A2 and the presence of specific T cells in the naive and, in case of BMLF-1, also the Ag-experienced repertoire. Collectively, we have developed a sensitive and easy-to-implement in vitro T cell amplification method to enrich epitope-specific T cells that is expected to facilitate research and clinical utility regarding T cell diagnosis and treatments

    Cancer germline antigens and tumor-agnostic CD8+ T cell evasion

    Get PDF
    Cancer germline antigens (CGAs) are expressed in immune-privileged germline tissues, while epigenetically silenced in somatic tissues. CGAs become re-expressed in tumors and can promote oncogenesis. Tumors prominently exploit mechanisms similar to those in germline tissues to shield from immunosurveillance. We hypothesize that CGAs contribute towards tumor escape from immune effector CD8+ T cells. For illustrative purposes, we assessed the co-presence or -absence of CGAs with these cells in multiple tumor types. Considering a broad array of CD8+ T cell evasive mechanisms, we exemplify the co-occurrence of gene transcripts of eight CGAs with those of adhesion molecules, endothelial cells, and/or the Wnt pathway. We present a novel concept of CGAs and their association with CD8+ T cell evasion, which may be relevant for future immunotherapeutic interventions

    Gene Engineering T Cells with T-Cell Receptor for Adoptive Therapy

    Get PDF
    Prior to clinical testing of adoptive T-cell therapy with T-cell receptor (TCR)-engineered T cells, TCRs need to be retrieved, annotated, gene-transferred, and extensively tested in vitro to accurately assess specificity and sensitivity of target recognition. Here, we present a fundamental series of protocols that cover critical preclinical parameters, thereby enabling the selection of candidate TCRs for clinical testing

    Suitability of tumor-associated antibodies as predictive biomarker for response to immune checkpoint inhibitors in patients with melanoma: a short report

    Get PDF
    In 2019, Fässler et al showed in this journal that the presence of tumor-associated antibodies correlated with response to immune checkpoint inhibitor treatment in patients with metastatic melanoma. The results of this study suggested that tumor-associated antibodies directed against melanocyte-differentiation antigens and the cancer-germline antigen NY-ESO-1 should be further investigated as candidate biomarkers for response to immune checkpoint inhibitors. The aim of the current study was to validate and extend these previous findings. Therefore, we examined the correlation between serum levels of tumor-associated antibodies and tumor response after treatment with immune checkpoint inhibitors in patients with metastatic melanoma.All patients included in this prospective study were diagnosed with advanced stage melanoma and treated with nivolumab or pembrolizumab monotherapy. Blood samples were collected before and during treatment. Serum levels of tumor-associated antibodies against the melanocyte differentiation antigen Melan-A and the cancer germline antigens NY-ESO-1, MAGE-C2, MAGE-A6 and ROPN1B were measured at baseline and during treatment. Differences between responders and non-responders were assessed using the Mann-Whitney U-test, and differences between different overall survival categories with the Kruskal-Wallis test. P values ≤0.05 were considered significant.Serum samples of 58 patients with advanced melanoma with long-term follow-up (>3 years) were collected. In contrast to the findings of Fässler et al, for all antibodies tested, we found no significant differences between serum levels of responders and non-responders before or during treatment with immune checkpoint inhibitors. In addition, no significant differences were found in serum levels of tumor-associated antibodies for different overall survival groups.Although our study included a larger and more mature cohort of patients with longer follow-up, we could not externally validate the findings of Fässler et al In addition, we were not able to identify other cancer germline antigens as predictive biomarkers of response to immune checkpoint inhibitors in patients advanced melanoma. Based on the results of the present study, clinical applicability of tumor-associated antibodies directed against tumor antigens as predictive biomarkers for immune checkpoint inhibitors in patients with advanced melanoma is not feasible
    corecore