54 research outputs found
Decoding the multifaceted HIV-1 virus-host interactome
Recently in BMC Medical Genomics, Tozeren and colleagues have uncovered virus-host interactions by searching for conserved peptide motifs in HIV and human proteins. Their computational model provides a novel perspective in the interpretation of high-throughput data on the HIV-host interactome
Functional gene analysis of individual response to challenge of SIVmac239 in M. mulatta PBMC culture
AbstractIt has previously been shown in macaques that individual animals exhibit varying responses to challenge with the same strain of SIV. We attempted to elucidate these differences using functional genomics and correlate them to biological response. Unfractionated PBMC from three rhesus macaques were isolated, activated, and infected with SIVmac239. Interestingly, one of the three animals used for these experiments exhibited a completely unique response to infection relative to the other two. After repeated attempts to infect the PBMC from this animal, little or no infectivity was seen across the time points considered, and corresponding to this apparent lack of infection, few genes were seen to be differentially expressed when compared to mock-infected cells. For the remaining two animals, gene expression analysis showed that while they exhibited responses for the same groups of pathways, these responses included differences specific to the individual animal at the gene level. In instances where the patterns of differential gene expression differed between these animals, the genes being differentially expressed were associated with the same categories of biological process, mainly immune response and cell signaling. At the pathway level, these animals again exhibited similar responses that could be predicted based on the experimental conditions. Even in these expected results, the degree of response and the specific genes being regulated differed greatly from animal to animal. The differences in gene expression on an individual level have the potential to be used as markers in identification of animals suitable for lentiviral infection experiments. Our results highlight the importance of individual variation in response to viral challenge
High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations
BACKGROUND: Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST)-derived array. RESULTS: We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR) of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS) sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from a closely related species. CONCLUSION: The number of different genes represented on microarrays for unfinished genomes can be greatly increased by matching known gene transcript annotations from a closely related species with sequence data from the unfinished genome. Signal intensity on both EST- and genome-derived arrays was highly correlated with probe distance from the 3' UTR, information often missing from ESTs yet present in early-stage genome projects
Evidence That Hepatitis C Virus Resistance to Interferon Is Mediated through Repression of the PKR Protein Kinase by the Nonstructural 5A Protein
AbstractHepatitis C virus (HCV) is the major cause of non-A non-B hepatitis and a leading cause of liver dysfunction worldwide. While the current therapy for chronic HCV infection is parenteral administration of type 1 interferon (IFN), only a fraction of HCV-infected individuals completely respond to treatment. Previous studies have correlated the IFN sensitivity of strain HCV-1b with mutations within a discrete region of the viral nonstructural 5A protein (NS5A), termed the interferon sensitivity determining region (ISDR), suggesting that NS5A may contribute to the IFN-resistant phenotype of HCV. To determine the importance of HCV NS5A and the NS5A ISDR in mediating HCV IFN resistance, we tested whether the NS5A protein could regulate the IFN-induced protein kinase, PKR, a mediator of IFN-induced antiviral resistance and a target of viral and cellular inhibitors. Using multiple approaches, including biochemical, transfection, and yeast genetics analyses, we can now report that NS5A represses PKR through a direct interaction with the protein kinase catalytic domain and that both PKR repression and interaction requires the ISDR. Thus, inactivation of PKR may be one mechanism by which HCV avoids the antiviral effects of IFN. Finally, the inhibition of the PKR protein kinase by NS5A is the first described function for this HCV protein
Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human
We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported
A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm
The twentieth century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and waterborne illnesses are frequent, multidrug-resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the twenty-first century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program, we think that the time is at hand to redefine the pathogen-host research paradigm
Lethal Influenza Virus Infection in Macaques Is Associated with Early Dysregulation of Inflammatory Related Genes
The enormous toll on human life during the 1918–1919 Spanish influenza pandemic is a constant reminder of the potential lethality of influenza viruses. With the declaration by the World Health Organization of a new H1N1 influenza virus pandemic, and with continued human cases of highly pathogenic H5N1 avian influenza virus infection, a better understanding of the host response to highly pathogenic influenza viruses is essential. To this end, we compared pathology and global gene expression profiles in bronchial tissue from macaques infected with either the reconstructed 1918 pandemic virus or the highly pathogenic avian H5N1 virus A/Vietnam/1203/04. Severe pathology was observed in respiratory tissues from 1918 virus-infected animals as early as 12 hours after infection, and pathology steadily increased at later time points. Although tissues from animals infected with A/Vietnam/1203/04 also showed clear signs of pathology early on, less pathology was observed at later time points, and there was evidence of tissue repair. Global transcriptional profiles revealed that specific groups of genes associated with inflammation and cell death were up-regulated in bronchial tissues from animals infected with the 1918 virus but down-regulated in animals infected with A/Vietnam/1203/04. Importantly, the 1918 virus up-regulated key components of the inflammasome, NLRP3 and IL-1β, whereas these genes were down-regulated by A/Vietnam/1203/04 early after infection. TUNEL assays revealed that both viruses elicited an apoptotic response in lungs and bronchi, although the response occurred earlier during 1918 virus infection. Our findings suggest that the severity of disease in 1918 virus-infected macaques is a consequence of the early up-regulation of cell death and inflammatory related genes, in which additive or synergistic effects likely dictate the severity of tissue damage
Recommended from our members
Integrated Omics Analysis of Pathogenic Host Responses during Pandemic H1N1 Influenza Virus Infection: The Crucial Role of Lipid Metabolism
Pandemic influenza viruses modulate proinflammatory responses that can lead to immunopathogenesis. We present an extensive and systematic profiling of lipids, metabolites, and proteins in respiratory compartments of ferrets infected with either 1918 or 2009 human pandemic H1N1 influenza viruses. Integrative analysis of high-throughput omics data with virologic and histopathologic data uncovered relationships between host responses and phenotypic outcomes of viral infection. Proinflammatory lipid precursors in the trachea following 1918 infection correlated with severe tracheal lesions. Using an algorithm to infer cell quantity changes from gene expression data, we found enrichment of distinct T cell subpopulations in the trachea. There was also a predicted increase in inflammatory monocytes in the lung of 1918 virus-infected animals that was sustained throughout infection. This study presents a unique resource to the influenza research community and demonstrates the utility of an integrative systems approach for characterization of lipid metabolism alterations underlying respiratory responses to viruses
- …