638 research outputs found

    Local field distribution near corrugated interfaces: Green's function formulation

    Full text link
    We have developed a Green's function formalism to compute the local field distribution near an interface separating two media of different dielectric constants. The Maxwell's equations are converted into a surface integral equation; thus it greatly simplifies the solutions and yields accurate results for interfaces of arbitrary shape. The integral equation is solved and the local field distribution is obtained for a periodic interface.Comment: Presented at the Conference on Computational Physics (CCP2000), held at Gold Coast, Australia from 3 - 8, December 2000. To be published in Proceedings of CCP200

    Gd3+ rattling triggered by a "weak" M-I transition at 140-160 K in the Ce1-xGdxFe4$P12 x ~ 0.001 skutterudite compounds: an ESR study

    Full text link
    In this work we report electron spin resonance (ESR) measurements in the semiconducting Ce1-xGdxFe4P12 (x ~ 0.001) filled skutterudite compounds. Investigation of the temperature (T) dependence of the ESR spectra and relaxation process suggests, that in the T-interval of 140-160 K, the onset of a "weak" metal-insulator (M-I) transition takes place due to the increasing density of thermally activated carriers across the semiconducting gap of ~ 1500 K. In addition, the observed low-T fine and hyperfine structures start to collapse at ~ 140 K and is completely absent for > 160 K. We claim that the increasing carrier density is able to trigger the rattling of the Gd3+ ions which in turn is responsible, via a motional narrowing mechanism, for the collapse of the ESR spectra.Comment: 3 pages, 3 figures, presented at QCNP2009, to appear in pss

    Inward and Outward Integral Equations and the KKR Method for Photons

    Full text link
    In the case of electromagnetic waves it is necessary to distinguish between inward and outward on-shell integral equations. Both kinds of equation are derived. A correct implementation of the photonic KKR method then requires the inward equations and it follows directly from them. A derivation of the KKR method from a variational principle is also outlined. Rather surprisingly, the variational KKR method cannot be entirely written in terms of surface integrals unless permeabilities are piecewise constant. Both kinds of photonic KKR method use the standard structure constants of the electronic KKR method and hence allow for a direct numerical application. As a by-product, matching rules are obtained for derivatives of fields on different sides of the discontinuity of permeabilities. Key words: The Maxwell equations, photonic band gap calculationsComment: (to appear in J. Phys. : Cond. Matter), Latex 17 pp, PRA-HEP 93/10 (exclusively English and unimportant misprints corrected

    Korringa ratio of ferromagnetically correlated impure metals

    Full text link
    The Korringa ratio, K\cal K, obtained by taking an appropriate combination of the Knight shift and nuclear spin-lattice relaxation time, is calculated at finite temperature, TT, in the three-dimensional electron gas model, including the electron-electron interaction, UU, and non-magnetic impurity scatterings. K\cal K varies in a simple way with respect to UU and TT; it decreases as UU is increased but increases as TT is raised. However, K\cal K varies in a slightly more complicated way with respect to the impurity scatterings; as the scattering rate is increased, K\cal K increases for small UU and low TT, but decreases for large UU or high TT regime. This calls for a more careful analysis when one attempts to estimate the Stoner factor from K\cal K.Comment: 7 pages including 3 figures. To be published in Phys. Rev. B, Dec.

    On wave propagation in inhomogeneous systems

    Full text link
    We present a theory of electron, electromagnetic, and elastic wave propagation in systems consisting of non-overlapping scatterers in a host medium. The theory provides a framework for a unified description of wave propagation in three-dimensional periodic structures, finite slabs of layered structures, and systems with impurities: isolated impurities, impurity aggregates, or randomly distributed impurities. We point out the similarities and differences between the different cases considered, and discuss the numerical implementation of the formalism.Comment: 12 page

    Dynamical charge inhomogeneity and crystal-field fluctuations for 4f ions in high-Tc cuprates

    Full text link
    The main relaxation mechanism of crystal-field excitations in rare-earth ions in cuprates is believed to be provided by the fluctuations of crystalline electric field induced by a dynamic charge inhomogeneity generic for the doped cuprates. We address the generalized granular model as one of the model scenario for such an ingomogeneity where the cuprate charge subsystem remind that of Wigner crystal with the melting transition and phonon-like positional excitation modes. Formal description of R-ion relaxation coincides with that of recently suggested magnetoelastic mechanism.Comment: 4 page

    Energy-resolved inelastic electron scattering off a magnetic impurity

    Full text link
    We study inelastic scattering of energetic electrons off a Kondo impurity. If the energy E of the incoming electron (measured from the Fermi level) exceeds significantly the Kondo temperature T_K, then the differential inelastic cross-section \sigma (E,w), i.e., the cross-section characterizing scattering of an electron with a given energy transfer w, is well-defined. We show that \sigma (E,w) factorizes into two parts. The E-dependence of \sigma (E,w) is logarithmically weak and is due to the Kondo renormalization of the effective coupling. We are able to relate the w-dependence to the spin-spin correlation function of the magnetic impurity. Using this relation, we demonstrate that in the absence of magnetic field the dynamics of the impurity spin causes the electron scattering to be inelastic at any temperature. Quenching of the spin dynamics by an applied magnetic field results in a finite elastic component of the electron scattering cross-section. The differential scattering cross-section may be extracted from the measurements of relaxation of hot electrons injected in conductors containing localized spins.Comment: 15 pages, 9 figures; final version as published, minor changes, reference adde

    Electron Spin-Lattice Relaxation of Er3+ ions in Er0.01Y0.99Ba2Cu3Ox

    Full text link
    The temperature dependence of the electron spin-lattice relaxation SLR was studied in Er0.01Y0.99Ba2Cu3Ox compounds. The data derived from the electron spin resonance ESR and SLR measurements were compared to those from inelastic neutron scattering studies. SLR of Er3+ ions in the temperature range from 20 K to 65 K can be explained by the resonant phonon relaxation process with the involvement of the lowest excited crystalline-electric-field electronic states of Er3+. These results are consistent with a local phase separation effects. Possible mechanisms of the ESR line broadening at lower temperatures are discussed. Keywords: YBCO; EPR; ESR; Electron spin-lattice relaxation time, T ; Crystalline-electric-fieldComment: 6 pages, 4 figure

    Coulomb "blockade" of Nuclear Spin Relaxation in Quantum Dots

    Full text link
    We study the mechanism of nuclear spin relaxation in quantum dots due to the electron exchange with 2D gas. We show that the nuclear spin relaxation rate is dramatically affected by the Coulomb blockade and can be controlled by gate voltage. In the case of strong spin-orbit coupling the relaxation rate is maximal in the Coulomb blockade valleys whereas for the weak spin-orbit coupling the maximum of the nuclear spin relaxation rate is near the Coulomb blockade peaks.Comment: 4 pages, 3 figure
    • …
    corecore