446 research outputs found

    Wave Functions and Energies of Magnetopolarons in Semiconductor Quantum Wells

    Full text link
    The classification of magnetopolarons in semiconductor quantum wells (QW) is represented. Magnetopolarons appear due to the Johnson - Larsen effect. The wave functions of usual and combined magnetopolarons are obtained by the diodanalization of the Schrodinger equation.Comment: 7 pages, 2 figure

    Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well

    Full text link
    Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and two closely located excited levels are taken into account. A wide quantum well (the width of which is comparable to the length of the light wave, corresponding to the pulse carrying frequency) is considered, and the dependance of the interband matrix element of the momentum operator on the light wave vector is taken into account. Refractive indices of barriers and quantum well are assumed equal each other. The problem is solved for an arbitrary ratio of radiative and nonradiative lifetimes of electronic excitations. It is shown that the spatial dispersion essentially affects the shapes of reflected and transmitted pulses. The largest changes occur when the radiative broadening is close to the difference of frequencies of interband transitions taken into account.Comment: 7 pages, 5 figure

    Analogue of the Kubo Formula for Conductivity of Spatially Inhomogeneous Systems and Electric Fields

    Full text link
    The average of densities of currents and charges, induced by a weak electromagnetic field in spatially inhomogeneous are calculated at final temperatures. The Kubo formula for a conductivity tensor is generalized for spatially inhomogeneous systems and fields. The contributions containing electric fields and derivative from fields on coordinates are allocated. The Semiconductor quantum wells, wires and dots may be considered as spatially inhomogeneous systems.Comment: 10 page
    • …
    corecore