527 research outputs found

    Wave Functions and Energies of Magnetopolarons in Semiconductor Quantum Wells

    Full text link
    The classification of magnetopolarons in semiconductor quantum wells (QW) is represented. Magnetopolarons appear due to the Johnson - Larsen effect. The wave functions of usual and combined magnetopolarons are obtained by the diodanalization of the Schrodinger equation.Comment: 7 pages, 2 figure

    Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well

    Full text link
    Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and two closely located excited levels are taken into account. A wide quantum well (the width of which is comparable to the length of the light wave, corresponding to the pulse carrying frequency) is considered, and the dependance of the interband matrix element of the momentum operator on the light wave vector is taken into account. Refractive indices of barriers and quantum well are assumed equal each other. The problem is solved for an arbitrary ratio of radiative and nonradiative lifetimes of electronic excitations. It is shown that the spatial dispersion essentially affects the shapes of reflected and transmitted pulses. The largest changes occur when the radiative broadening is close to the difference of frequencies of interband transitions taken into account.Comment: 7 pages, 5 figure

    Magnetooptical effects in quantum wells irradiated with light pulses

    Full text link
    The method of detection and investigation of the magnetopolaron effect in the semiconductor quantum wells (QW) in a strong magnetic field, based on pulse light irradiation and measuring the reflected and transmitted pulses, has been proposed. It has been shown that a beating amplitude on the frequencies, corresponding to the magnetopolaron energy level splitting, depends strongly from the exciting pulse width. The existence of the time points of the total reflection and total transparency has been predicted. The high orders of the perturbation theory on electron-electromagnetic field interaction have been taken into account.Comment: 5 pages, 5 figures with captions, corrected typos, figures are reedeted to improve their quality in accordance with the Referee requirement; Phys. Rev. B, Brief Reports, submitted for publicatio

    A CDCL-style calculus for solving non-linear constraints

    Get PDF
    In this paper we propose a novel approach for checking satisfiability of non-linear constraints over the reals, called ksmt. The procedure is based on conflict resolution in CDCL style calculus, using a composition of symbolical and numerical methods. To deal with the non-linear components in case of conflicts we use numerically constructed restricted linearisations. This approach covers a large number of computable non-linear real functions such as polynomials, rational or trigonometrical functions and beyond. A prototypical implementation has been evaluated on several non-linear SMT-LIB examples and the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at <http://informatik.uni-trier.de/~brausse/ksmt/
    • …
    corecore